Сша полетели на марс
Нынешний успех американцев в космосе вызвал гневные и язвительно-уничижительные бурления в самых разных кругах грамотной российской общественности. В основном, однако, и горестные, и сатирические инвективы можно свести к одному вопросу: "А мы?". И почему-то с порога отвергается простейшая мысль: а мы и так летали и летаем в космос, и в этом смысле для нас от личного успеха американцев, наконец догнавших нас через девять лет усилий, ничего не меняется. Нет, стоит ор и рёв: Пете купили синюю машинку, а вы мне такую же не покупаете-е.
Что нам нужно в космосе?
Нет, зачем на эти траты шла Россия в исторической стадии Советского Союза, понятно. Затем же, зачем вбрасывала непостроенные города и дороги в ненасытный зёв атомного проекта, зачем кидала миллиарды в реактивную авиацию, зачем строила атомные подлодки стоимостью в районный город. Безопасность – это приоритет высшего порядка по сравнению с деньгами. И он должен был быть обеспечен даже ценою недофинансирования в, как тогда называли, "сфере Б" – сфере производства товаров народного потребления. Ценою бедности и тотальных дефицитов, иначе говоря.
Так что города на космодромах сжигались не ради успехов в космосе, а ради безопасности страны. Успехи были лишь приятным дополнением к решению вопросов безопасности. Да и не такие уж грандиозные они были, если честно признать. Грандиозными были приоритеты. Первый спутник, первый человек в космосе, первая межпланетная станция… А вот с успехами было посложнее. После Алексея Леонова русские космонавты в открытый космос вышли только через 4 года. Американцы в это время освоили и ручную стыковку кораблей, и пребывание человека вне пределов космической капсулы. Американцы первыми – уже в 1960-м, на 5 лет раньше нас – вывели на орбиту первый спутник связи. Они же первыми нашли космическим аппаратам коммерческое применение. Да, мы первыми посадили земное изделие на Марс, но первые близкие снимки и вообще первую информацию с него получили они.
После Алексея Леонова русские космонавты в открытый космос вышли только через 4 года. Фото: Bill Ingalls/ Globallookpress via ZUMA Press
Не будем спорить о Луне, уважая мнение тех, кто считает, что американцы на ней не высаживались, но факты – вещь упрямая: после 1970 года, нашего успеха с посадкой на Венеру, никаких приоритетов за СССР в дальнем космосе не было. Вообще.
А вот на орбите – пожалуйста. И автоматические стыковки, и сборки из кораблей, и космические истребители, и орбитальные станции – здесь советская, а затем и российская космонавтика обставила американцев на порядок. Если не на два.
А почему? Да просто всё: потому что военные были в том заинтересованы. В отличие от Луны. Ибо – безопасность!
Так что когда мы рассуждаем о советской космонавтике, лучше сразу определиться в понятиях: своими успехами она обязана военным. Всё остальное, что добыто в гражданском секторе, – дополнительная опция. Выгрызаемая тем же Королёвым у военных подчас чуть ли не гортанью. Их.
Что нам нужно в космосе теперь?
И вот теперь, собственно, и настала пора задаться вопросом: а что нам нужно сегодня в соревновании в сфере пилотируемой космонавтики?
Ну, предположим, что у нас бесконечное финансирование в этой области. Конструкторских и инженерных умов в ней столько, что Королёв не с Глушко и Янгелем ругается, а с Королёвым и Королёвым. И Янгель с Янгелем. И Челомей с Челомеем соревнуется в клепании ракет УР-5000, а куратор от ЦК Дмитрий Устинов не ненавидит его, а изо всех сил помогает. В общем, рай для космонавтики.
И что? Вот что можно и нужно сделать сверх того, что сегодня делается? Ну, если убрать, понятно, военное применение – никто не наводит на противника пушки станции "Алмаз" и космический истребитель "Буран 2.0" не перехватывает вражеские "шаттлы". Есть ответ?
Ну, наверное, чтобы возить исследователей на космические станции? А что им там делать? Что исследовать такого, с чем не справляются автоматические аппараты?
Логика предлагает только один ответ: что-то такое, чего автоматы сделать не могут, и такое, чего не получится исследовать проще и дешевле на Земле. И что же это? Ну, очевидно: на орбите имеется невесомость и вакуум. И то и другое не стопроцентное, но это пока не важно.
Очевидно: на орбите имеется невесомость и вакуум. И то и другое не стопроцентное. Фото: Roscosmos/ Globallookpress
Итак, невесомость, точнее, микрогравитация. Есть важный объект исследования в её условиях – сам человек. Проблема, однако, в том, что применение полученным в этой области знаниям очень узкое – в полётах при микрогравитации. Проблема, однако, в том, что за прошедшие уже десятилетия работы на орбите знания и опыт накоплены практически полностью. И рекомендации по поддержанию здоровья и работоспособности выработаны и практически не меняются в сути своей с 1970-х годов. И сегодня космонавты занимаются на МКС в этом сегменте исследованиями, что называется, "на отвяжись". Ну, то есть не совсем так – в науке лишнего знания не бывает. Но согласимся: исследование "влияния условий космического полёта на эмбриогенез, онтогенез, органогенез и поведение гетеротрофных организмов (рыб), обитающих в водной среде", вряд ли обещает переворот в знаниях человечества.
А если убрать сопутствующие, обслуживающие исследования – типа воздействия факторов космического полёта на те или иные органы или клетки, то неизбежен вывод: не было бы МКС, прекрасно обошлось бы человечество без этих сведений.
Были ещё идеи с выращиванием полезных кристаллов в условиях невесомости – от белковых до плазменно-пылевых. Но с последними академику Фортову завершить работы не дали, и установку в Тихом океане затопили. А с прочими выяснилось, что невесомость особых прорывов не даёт, а даже орбитальный вакуум не даёт тех условий для чистого производства, где выращивают кристаллы старательные женщины в Юго-Восточной Азии. Ибо не вакуум там, а достаточно атмосферных частиц, чтобы саму станцию постоянно подтормаживать. В общем, азиатских глаз разрез заменяет МКС…
Ну, тогда астрономия? Исследования космоса в условиях, когда не мешает атмосфера? И магнитные поля над планетой? Да, и такие работы ведутся. Автоматическими орбитальными телескопами. Массу всего интересного открыли, включая землеподобную планету возле ближайшей к Солнцу звезды Проксима Центавра. Вот только ни чудаковатый профессор, бородка клинышком, упёршийся глазом в линзу телескопа, ни мужественный космонавт, наводящий подзорную трубу через иллюминатор на ту Проксиму Центавра, для этого процесса не нужны. Там работают сложнейшие устройства, где человек нужен только для интерпретации получаемых данных. Для чего на орбите ему быть вовсе не нужно. Ну, разве что починить вдруг закапризничавшую технику. Как здорово было бы, если бы это можно было сделать с недавно почившим в бозе нашим радиотелескопом "Спектр-Р"! Но тут космическая станция не помощник. Разве что по пути китайцев пойти, которые собираются к своей планируемой на следующий год станции телескоп привязать. Чтобы починить можно было при нужде.
Что остаётся?
Остаётся только хардкор, только военное применение человека на орбите. Ибо это единственный настоящий случай, когда автоматы заменить его не могут. И во всяком случае требуют человеческого пригляда.
То есть возвращаемся к чему? Да, к вопросам безопасности.
И именно поэтому американцы, образно говоря, почти 10 лет ковырялись в носу вместо того, чтобы строить свой корабль для доставки людей на МКС. Не нужно, ибо дорого и плохо, и проще заплатить русским, которые отвезут американских коллег на станцию на своих надёжных и дешёвых "Союзах". А вот когда технологии вплотную подошли к тому, чтобы создание космических боевых платформ и орбитальных истребителей стало реальным, появилась нужда и в многоразовых кораблях. В том числе – или прежде всего – в военной версии. Потенциально, конечно, ибо хардкор пока не наступил.
Но Космическое командование американцы создали загодя.
На нынешних топливах на орбиту запускаются не космические корабли, а металлические чушки, не способные к свободному полёту. Фото: SpaceX/ Globallookpress
Что ещё?
А ещё то, что на самом деле и это временное решение. Какими были те же "шаттлы". Ибо есть одна неразрешимая проблема для современной космонавтики. Заключается она в том, что современные топлива на химической основе для космических носителей практически исчерпали свой энергетический потенциал. Возвращаемый носитель, нет ли – не важно: это всё равно носитель, который вырабатывает практически всё топливо при запуске и затем отбрасывается. На орбиту корабль попадает с очень ограниченным запасом топлива, которого хватает только на крайне ограниченные возможности для маневрирования. По сути, на нынешних топливах на орбиту запускаются не космические корабли, а металлические чушки, не способные к свободному полёту.
Немного по-детски, конечно, описано, но – чтобы принцип был ясно виден. Так что не будет никакого Марса ни к 2030-му, ни к 2050 году. Если…
Будущее космонавтики
…если за эти годы не будут освоены новые космические корабли на новых двигательных принципах.
Именно в этом направлении лежат будущие успехи космонавтики – реальные, а не бульканье в стакане воды. Те самые чаемые победы и прорывы, а не возврат к технологии многоразовости, втрое более дорогостоящей, нежели одноразовые корабли. Именно с новыми двигателями на новых принципах космические аппараты смогут свободно перемещаться и маневрировать в пространстве и не будут привязаны к той орбите, до которой их дотянут низкоэнергетические химические топлива. Они же, новые двигатели на иных топливах, решат и проблему полёта к Марсу сквозь тяжёлые протоны космических лучей, и вообще проблему исследования Солнечной системы. На них, этих двигателях, можно будет летать с постоянным ускорением, которое избавит космонавтов от месяцев жизни в условиях невесомости со всеми её проблемами.
И вот в этом направлении, насколько известно, российские конструкторы серьёзно работают. Сюда сместились прежние космические мечты. Вот и будем ждать новых – и реальных! – космических побед здесь.
Покорение Марса: история и будущее космических программ
Программы СССР
- С 1960 по 1973 год была проведена колоссальная работа по реализации программы по изучению планеты. Однако первые летательные аппараты «Марс 160А» и «Марс 160Б» даже не были выведены на околоземную орбиту из-за аварий ракет-носителей;
- В 1963 году советская автоматическая межпланетная станция (АМС) «Марс-1» подобралась к «красной планете» на расстояние 200 тыс. км, но связь с аппаратом была утеряна;
- Следующая АМС «Марс-2», состоявшая из искусственного спутника и спускаемого аппарата, все-таки добралась до Марса в 1971-м. Спускаемый аппарат разбился, зато спутник проработал около восьми месяцев;
- Самой удачной попыткой был запуск АМС «Марс-3» в декабре 1971 года. Спускаемый аппарат мягко приземлился на планету и проработал 14,5 секунд. Для советской космонавтики это было большим достижением.
Существует несколько биомаркеров, по которым можно определить, есть ли потенциально на планете жизнь или нет. Это кислород, озон, метан, вода и углекислый газ. Если планета похожа на Землю по массе и радиусу и находится в зоне обитаемости, то есть на таком расстоянии от Солнца, что вода может оставаться в жидком виде, а в ее атмосфере присутствуют и взаимодействуют друг с другом пять биомаркеров, то вероятность наличия жизни (в настоящем или в прошлом) очень высока.
От Циолковского до очарованности космосом
В научном дискурсе проблема межпланетных полетов человека впервые была поднята в работах ученого Константина Циолковского, математика Якова Перельмана и инженера Владимира Рюмина в самом начале прошлого века. Первые же эксперименты в этой области принадлежат советскому изобретателю Фридриху Цандеру, который, основываясь на теоретических расчетах своих предшественников, подготовил первый проект полета человека на другую планету.
Согласно подсчетам Цандера, для путешествия двух-трех космонавтов на Марс потребовался бы корабль массой в 400 тонн, конструкция которого должна была представлять собой комбинацию аэроплана и ракеты — на случай, если полет придется осуществлять в другой по своей плотности атмосфере.
Для обслуживания космонавтов и кораблей ученый предлагал использовать околопланетные орбитальные станции. К слову, Цандер впервые сумел экспериментально проверить возможность использования оранжерей, которые планировал разместить на борту корабля для выращивания питания космонавтам.
Впоследствии на фундаменте этих исследований была организована «Группа изучения реактивного движения» (ГИРД), которая в 1933 году вошла в Реактивный научно-исследовательский институт (РНИИ), главным инженером которого стал легендарный Сергей Королев. Осенью того же года произошел первый запуск советской ракеты «ГИРД-Х», которая, взлетев вертикально на высоту около 80 метров, разбилась. До начала Второй мировой войны ее продолжали улучшать, обкатывая на наземных и летных испытаниях.
Конечно, первые проекты пилотируемого полета человека на другую планету были не реализуемыми в принципе. Например, сегодня мы знаем, что из-за низкой температуры (в среднем минус 62 градуса по Цельсию) и предельно разреженной атмосферы (примерно в 100 раз менее плотной, чем на Земле) совершить посадку на Марс, используя крылья самолета, невозможно.
Эти проекты скорее определили общий вектор развития, поставили новые задачи перед инженерами и превратили космическую отрасль едва ли не в самое культовое явление во всем цивилизованном мире.
Именно на пике этой всеобщей очарованности космосом, к концу 50-х — началу 60-х годов, в СССР и США сумели, наконец, сконструировать первые реальные аппараты, проложившие первые тропинки к Марсу.
Почему так сложно долететь до Марса?
Несмотря на многочисленные программы по изучению Марса, которые проводятся уже более 60 лет, полет на планету остается опасным, сложным и непредсказуемым. Почему?
- Одним из самых критичных этапов является запуск. До сих пор возникают проблемы с выходом за околоземную орбиту. В 2012 году у российской межпланетной станции «Фобос-Грунт» отказал бортовой компьютер, и аппарат сгорел в атмосфере, не выйдя за пределы Земли;
- Другая проблема — составление траектории полета. Расстояние между Землей и Марсом — 55 млн км, и современные космические аппараты вполне могут его преодолеть. Однако из-за разной скорости и траектории движения планет на пути реальная дистанция может достигать 450 млн км, а иногда и больше. При этом во время полета курс тоже может корректироваться. Если что-то пойдет не так, аппарат может улететь совсем в другую сторону или вовсе исчезнуть в космосе. Так произошло с японским космическим аппаратом «Нодзоми», отправленным в 1998 году. Ему не хватило мощности, чтобы сразу долететь до Марса, поэтому пришлось сделать несколько гравитационных маневров. По прошествии пяти лет, в 2003 году, «Нодзоми» прошел на высоте 1000 км от Марса, не выйдя на его орбиту;
- Если выйти на орбиту удалось, это еще не значит, что посадка пройдет успешно. Из-за большой задержки радиосигналов во времени — около 12 минут — дистанционное управление посадкой будет недоступно. Это значит, что необходим автономный бортовой компьютер, который «приземлит» аппарат самостоятельно. Посадка, как правило, занимает шесть-семь минут: их называют «семь минут ужаса», потому что именно в этот момент крушение ровера может привести к провалу всей миссии.
При приземлении марсохода Curiosity использовалась новая технология посадки, так называемый «Небесный кран», который за счет реактивных двигателей мягко опускает аппарат на поверхность планеты.
Технология «Небесный кран»NASA уже разрабатывает специальные костюмы, которые обеспечивают атмосферное давление не воздухом, как раньше, а сдавливанием кожи материалами, плотно прилегающими к телу. Такие скафандры весят вдвое меньше обычных и обладают высокой мобильностью.
В декабре 2020-го на вручении премии Axel Springer Award, которая присуждается выдающимся инноваторам, Илон Маск заявил, что через шесть лет у людей появится возможность высадиться на Марсе.
Кроме Илона Маска о колонизации Марса мечтает и NASA. В 2015 году агентство представило программу путешествия на «красную планету». Ее итогом должна стать высадка первого человека на Марс в 2030-х годах. Однако до этого предстоит проделать много работы: изучить поверхность Марса, разработать специальные костюмы, спроектировать ракеты и станции, в которых будет возможна безопасная посадка и многое другое.
Американский марсоход Perseverance совершил успешную посадку на поверхность Красной планеты
В состав автоматической станции, совершившей посадку, входит марсоход Perseverance ("Настойчивость"), оборудованный специальным вертолетом Ingenuity ("Изобретательность"). Посадка была осуществлена в 23:55 по мск. вр. в районе кратера Йезеро на экваторе Марса, примерно через три минуты аппарат передал на Землю два первых черно-белых снимка поверхности планеты.
Мы только что получили информацию, что Perseverance функционирует на поверхности МарсаСША отправили марсоход к Красной планете 30 июля 2020 года, ракета-носитель Atlas V стартовала с космодрома на мысе Канаверал.
Сам марсоход представляет собой шестиколесную научную лабораторию размером с небольшой автомобиль, на создание которой было затрачено около 2,5 млрд долларов. Габариты: длина - примерно 3 м без учета механической руки-манипулятора, ширина - 2,7 м, высота - 2,2 м. Масса марсохода составляет 1 025 кг.
Аппарат оборудован семью научными приборами и вертолетом Ingenuity, способным совершить пять кратковременных полетов на высоте около 10 метров. Основная задача данной миссии - сбор и изучение свойств отложений осадочных пород с целью поиска микроорганизмов, доказывающих наличие в прошлом жизни на Красной планете.
Американская марсианская миссия стартовала с космодрома на мысе Канаверал
Как сообщается на сайте Национального управления США по аэронавтике и исследованию космического пространства (NASA), ракета стартовала в 07:50 по времени Восточного побережья США (14:50 мск). Прибытие исследовательского марсохода Perseverance ("настойчивость" - англ.) на орбиту Марса запланировано на 18 февраля 2021 года.
Как ранее сообщалось, по прибытию к Красной планете в феврале 2021 года марсоход должен совершить посадку в районе кратера Йезеро на экваторе Марса.
Сам марсоход представляет собой шестиколесную научную лабораторию размером с небольшой автомобиль, на создание которой было затрачено около 2,5 млрд долларов. Габариты: длина - примерно 3 м без учета механической руки-манипулятора, ширина - 2,7 м, высота - 2,2 м. Масса марсохода составляет 1 025 кг.
Аппарат оборудован семью научными приборами и вертолетом Ingenuity (изобретательность - англ.), способным совершить пять кратковременных полетов на высоте около 10 метров. Основная задача данной миссии - сбор и изучение свойств отложений осадочных пород с целью поиска микроорганизмов, доказывающих наличие в прошлом жизни на Красной планете.
14-секундное знакомство
Первые попытки посадить на планету автоматический аппарат осуществил Советский Союз в начале 1960-х годов. Правда, все они закончились провалом. «Марс 1960А» и «Марс 1960Б» не достигли планеты из-за аварий ракеты-носителя «Молния». Чуть более успешным оказался запуск станции «Марс-1», которая, несмотря на Карибский кризис, все же сумела взлететь с Байконура и подобраться к планете на расстояние в 200 тыс. км, после чего связь с аппаратом была утрачена.
В дальнейшем Советскому Союзу удалось лишь 14-секундное пребывание на Марсе: в 1971 году аппарат «Марс-3» сумел успешно приземлиться на планету, однако сильнейшая пылевая буря прервала связь с марсоходом. Много большее удалось американцам.
В 1965 году аппарат «Mariner- 4» подлетел к планете на минимальное расстояние до ее центра — 13 200 км — и сумел сделать 21 изображение с разрешением порядка одного км. Затем уже в 1971 году был запущен первый искусственный спутник планеты «Mariner-9», который доставил на Землю тысячи новых и куда более детализированных снимков.
Например, оказалось, что Марс испещрен вулканическими и тектоническими геологическими формациями, что на нем есть высохшие русла водных потоков. С того момента начались масштабные исследования атмосферы и ионосферы планеты, а также ее окружающей среды.
Наконец, в 1975 году на планету успешно приземлились две автоматические станции «Viking 1» и «Viking 2». На Землю было отправлено более 50 тыс. снимков, которые позволили составить первый картографический набросок планеты. После этого успешных марсианских экспедиций не было более 20 лет. Только в 1996 году на орбиту вышел «Mars Global Surveyor», который сумел сделать уникальные по своей четкости изображения Марса.
Сегодня в сторону планеты движется новый исследовательский аппарат «Настойчивость» (Perseverance). В случае удачи, марсоход в 2029 году передаст орбитальному кораблю первые образцы марсианского грунта, которые будут доставлены на Землю.
Это особенно важно, потому что за счет мощностей наземных лабораторий ученые смогут определить биологическое происхождение марсианской почвы, а в перспективе — хотя бы частично реконструировать историю жизни на этой планете.
В целом за 60 лет активных исследований Марса общее количество миссий на эту планету достигло 45. Из них только 19 были успешными. И это — миссии только для автоматических аппаратов. О пилотируемом полете человека мы пока не вели даже речи.
Колонизация Марса: почему до сих пор ничего не вышло
Но все эти пророчества не сбылись. Марс, за которым человечество столь пристально наблюдает уже более 300 лет, так и остался неприступен. Более того, по сравнению с тем, как развивалась космическая индустрия в прошлом веке, сегодня мы будто бы наблюдаем регресс. Это особенно заметно по сфере пилотируемой космонавтики.
Все основные миссии сконцентрированы на МКС, а также на запуске спутников, закладывающих, например, инфраструктурные основы для «интернета вещей» или милитаризации космоса. Последний раз нога человека ступала на Луну в далеком 1972 году, в то время как американцы торжествуют по поводу недавней успешной стыковки с МКС космического корабля Crew Dragon.
По сравнению с хроникой триумфов 60-70-х годов прошлого века все это выглядит, мягко говоря, скромно.
Но такое торможение в развитии космонавтики в целом, и в реализации пилотируемого полета на Марс в частности, — скорее связано с более сложными проблемами институционального порядка, нежели с тем, что человек просто предпочел потребление покорению космоса — «пить пиво и смотреть сериалы», как посетовал однажды писатель Рэй Брэдбери.
Снимки марсианского ландшафта, сделанные марсоходом CuriosityИ дело даже не в финансировании (хотя любой проект, связанный с полетом на Марс, требует астрономических затрат) или отсутствии ярко выраженной идеологической составляющей, каковая была в эпоху холодной войны. За минувшие десятилетия наши знания о Марсе настолько расширились, что теперь на подобные миссии мы смотрим куда более реалистически, без того головокружительного воодушевления, с каким смотрели в будущее футурологи XX века. В этом смысле сама история проекта полета на Марс крайне поучительна.
Дата и программы первого полета на Марс
С эпохой освоения космоса появились проекты посещения близлежащих планет. Пионерами в этой области стали американцы, которые готовили высадку на Луну в 1960-х годах. В космическую гонку включились космические державы: СССР и Китай. В общем количестве на Марс было отправлено 14 межпланетных лабораторий и роботов-марсоходов. Некоторые разбились при посадке, другие не подают сигнал уже несколько десятилетий.
На начало 2019 года на Красной планете успешно работают 2 ровера: Curiosity и Opportunity, и одна лаборатория InSight. Все аппараты принадлежат космическому агентству NASA (США). Миссия марсохода Opportunity заканчивается. Ровер трудился на благо науки 15 лет.
По заявлениям частных и государственных космических организаций, в 2020 году стартуют проекты межпланетных миссий на Марс. Цель этих программ — подготовка к перелёту, освоение и колонизация Красной планеты.
Маск назвал сроки высадки человека на Марсе
Основатель SpaceX и Tesla Илон Маск считает, что его компания сможет впервые доставить человека на Марс через шесть лет. Об этом бизнесмен заявил, выступая на церемонии вручения премии немецкой медиакомпании «Аксель-Шпринген».
«С высокой долей вероятности, я думаю, в течение шести лет. Если нам повезет, то, может, и за четыре года», — сказал Маск.
Основатель SpaceX добавил, что отправка беспилотной миссии SpaceX на Марс планируется в течение двух лет.
В середине июня стало известно, что SpaceX планирует построить плавучий космодром на берегу Мексиканского залива в Техасе. Оттуда, по словам Маска, должны запускаться сверхтяжелые ракеты для полетов на Луну, Марс, а также для гиперзвуковых полетов на Земле.
С этой целью Space строит космический корабль Starship. Маск опубликовал его снимок в конце сентября. До этого испытания прототипов ракет, разрабатываемых SpaceX, заканчивались неудачей. Последняя авария произошла 30 мая. Тогда опытный образец Starship взорвался спустя две минуты после запуска двигателя. Ракета была полностью уничтожена, ее обломки разбросало вокруг стартовой площадки полигона Бока-Чика в районе американо-мексиканской границы.
Читайте на РБК ProДва других испытания, в феврале 2020 и в ноябре 2019 года, также завершились взрывами. Аварии были связаны с испытаниями топливных баков ракеты, которые заполнялись жидким азотом.
При этом SpaceX 30 мая осуществила первый в мире пилотируемый полет частной компании. Тогда корабль доставил на МКС двух американских астронавтов и вернулся на Землю. Так произошло возобновление собственной программы пилотируемой космонавтики в США после закрытия программы Space Shuttle.
16 ноября SpaceX совершила второй пилотируемый запуск. На МКС тогда отправили трех американских и одного японского астронавта.
Современные миссии
На сегодняшний день на орбите Марса работают несколько орбитальных аппаратов, которые изучают атмосферу и геологическое строение планеты.
- Mars Odyssey (США);
- Trace Gas Orbiter (Европейское космическое агентство, совместно с Россией);
- Mars Orbiter Mission (Индия);
- MAVEN-1 (США);
- MRO (США);
- Mars Express (Европейское космическое агентство).
Летом 2020-го на Марс отправились сразу несколько миссий из разных стран: США, Китая и ОАЭ.
10 февраля 2021 года на орбиту Марса вышел космический аппарат Объединенных Арабских Эмиратов «Аль-Амаль», что в переводе означает «Надежда». Зонд будет изучать атмосферу, изменение погоды в течение дня и года в разных регионах планеты, метеорологию в нижних частях атмосферы, пылевые бури, попытается найти взаимосвязь нынешнего и древнего климата Марса.
Спустя несколько часов после «Аль-Амаль» 10 февраля орбиты достигла станция еще одной страны — Китая. Спускаемый аппарат межпланетной станции «Тяньвэнь-1» должен совершить посадку на Марс в мае-июне 2021-го. Марсоход будет изучать планету сразу по нескольким направлениям. Благодаря специальному прибору, который может проникать на глубину до 100 метров, вездеход будет изучать геологическое строение и химический состав почвы. Также он будет исследовать климат, электромагнитные и гравитационные поля Марса.
19 февраля на Марс высадился ровер NASA Perseverance. Он будет искать признаки жизни, изучать грунт, исследовать климатические условия и пытаться получить кислород. Вместе с марсоходом на «красную планету» попал беспилотный вертолет Ingenuity. Он протестирует возможность летать подобным ему аппаратам на Марсе, и в случае успеха проведет съемку местности.
На Марсе с 2012 года проводит исследования еще один марсоход — Curiosity. Он уже обнаружил серу, азот, водород, кислород, фосфор и углерод, определил примерный состав почвы в районе залива Йеллоунайф, конца древней речной системы или дна озера. В этом регионе устройство проанализировало состав найденного глинистого материала, и выяснило, что он является результатом реакции пресной воды и магматических материалов. Одним словом, Curiosity доказал, что на Марсе могла быть жизнь.
Без гравитации и связи, но с плесенью и радиацией
Дело в том, что за все время активного изучения Красной планеты человечество многое узнало не только о том, что из себя представляет сам Марс — например, какова средняя температура на поверхности планеты, какие на ней климат, гравитационное и магнитное поля, атмосфера, — но и то, с какими трудностями сопряжены путешествие и посадка на Марс.
В итоге за счет собранной информации удалось определить основные проблемы пилотируемого проекта, без решения которых освоение человеком планеты невозможно или будет сопряжено с огромными рисками. Все они так или иначе входят в одну глобальную проблему — расстояние между Землей и Марсом, которое составляет более 55 млн км. Для сравнения — между Землей и Луной пролегает чуть больше 384 тыс. км.
Трейлер кинофильма «Марсианин», 2015 годТакая дистанция требует совершенно особых решений для успешного полета — начиная с устройства ракеты, заканчивая предварительной медико-психологической подготовкой космонавтов и координацией всей миссии.
По словам астронома, одно из возможных решений этой проблемы — быстрый перелет: когда на ракету будет установлен не химический реактивный двигатель, а ядерный. Но пока сама возможность использования такого двигателя активно исследуется: он очень грязный и опасный, и в случае, если с ракетой произойдет авария на старте, что бывает в 2-3% запусков, катастрофа будет куда страшнее, чем в Чернобыле.
Но даже если и удастся сконструировать достаточно мощный двигатель, начнутся препятствия совершенно другого порядка. Примерное время пути до Марса составит около 9 месяцев. Суммарная же длительность путешествия туда и обратно будет примерно 500 дней. То есть почти полтора года космонавтам придется провести в закрытом помещении в условиях почти полного отсутствия гравитации, с крайне примитивной и прерывающейся связью с Землей, а затем еще и в ужасающих марсианских условиях — при очень низких температурах и давлении.
Особенно много проблем — в отсутствии гравитации. «В невесомости происходит перемещение крови из вен нижних конечностей в верхнюю часть тела, которое приводит к переполнению кровью головы, отеку тканей в области шеи и головы и другим реакциям», — пишут, например, авторы книги «Пилотируемая экспедиция на Марс».
Иными словами, если в условиях Земли организм стремится доставить кровь и другие жидкости, преодолевая обычную гравитацию, то в космосе эти процессы продолжаются, несмотря на изменившиеся условия, что спровоцирует физиологические проблемы. Кроме того, ввиду отсутствия привычной нагрузки, человек будет терять мышечную массу и толщину костных тканей.
Помимо воздействия невесомости во время путешествия на Марс космонавт может получить чрезмерную дозу радиации, крайне опасную для работы организма.
«Если мы возьмем радиационный норматив для человека, который работает на ядерных предприятиях или на урановых рудниках, то уровень облучения равняется 1 тыс. миллизиверт. Считается, что такую не угрожающую жизни человека дозу можно получить, работая на подобном предприятии 50 лет. Так вот тот же космонавт, который работает на МКС, в год получает около 220 миллизиверт, то есть может находиться на ней безопасно, условно, в течение четырех лет. Но дело в том, что, находясь на МКС, человек защищен геомагнитным полем Земли, которое эффективно отклоняет заряженные частицы, в то время как полет на Марс будет проходить за пределами этого поля», — Вячеслав Шуршаков, заведующий отделом радиационной безопасности пилотируемых космических полетов ИМБП.
То есть, оказавшись в открытом космосе, астронавты на протяжении всего пути будут находиться под постоянным ионизирующим излучением, которое суммарно будет равняться разрешенной дозе на всю карьеру — 1 тыс. миллизиверт. Не говоря уже о том, что во время полета может произойти так называемое солнечное протонное событие — опасное проявление солнечной активности, которое может выбросить в сотни раз больше радиации, чем в невозмущенных условиях.
Полученная за полет доза радиации может привести к значительному сокращению продолжительности человеческой жизни, увеличению риска развития болезни Паркинсона и онкологических заболеваний, нарушению кратковременной памяти. К слову, поэтому считается, что женщине пока не стоит участвовать в миссии вовсе, ведь статистически продолжительность жизни женщины больше, чем у мужчины, а значит — больше рисков столкнуться с отсроченными болезнями к старости.
По словам Вячеслава Шуршакова, на сегодняшний день обсуждаются сразу несколько способов минимизации вреда ионизирующего излучения на космонавтов, например, есть идея создать вокруг космического корабля нечто подобное тому магнитному полю, которое окружает Землю и защищает человека на МКС. Также можно ввести космонавтов в летаргический сон, произвести изменения на генном уровне, сделав организм более устойчивым к радиации. Есть варианты нейрохирургического вмешательства, заранее купирующего возможные проявления болезни Паркинсона. Такие операции сегодня уже проводятся в Японии.
Но и это еще не все. Помимо психологических проблем есть сложности и с гигиеной: неясно как стирать одежду и мыться. Отсутствие же солнечного света и замкнутая влажная атмосфера — идеальная среда для образования грибков и плесени, которые опасны тем, что могут «съесть» пластиковые изоляции на борту корабля и спровоцировать аварии.
К этому добавляются еще и типичные для любых космических полетов заболевания. Авторы книги «Пилотируемая экспедиция на Марс» дают такой внушительный список: «Космическая болезнь движения, заложенность носовых пазух, запоры, головная боль, раздражение кожи и ее сухость, абсцессы, небольшие ссадины и ушибы, воспаление роговицы или ее ссадины, инфекция верхних дыхательных путей, бессонница, отит». Поэтому на борту корабля потребуется создать автономный медицинский центр. Значимыми здесь могут оказаться и технологии телемедицины.
Конечно, все эти проблемы в перспективе могут быть решены. Многое уже прорабатывается сегодня. Например, инженеры продумывают более совершенные скафандры, которые помогут человеку выжить в условиях марсианского климата, совершенствуют систему связи, чтобы улучшить координацию всего проекта, конструируют аппарат для безопасной посадки на планету. Продумывается и возможность выращивания овощей на планете, чтобы обеспечить всю команду едой. Изучаются возможные психологические проблемы долгого полета.
Но хотя человечество за минувшие годы сделало очень многое для приближения колонизации Марса, пока даже в среднесрочной перспективе не стоит рассчитывать на то, что человек ступит на эту планету.
Подписывайтесь на Telegram-канал РБК Тренды и будьте в курсе актуальных тенденций и прогнозов о будущем технологий, эко-номики, образования и инноваций.
Когда первый человек высадится на Марсе: состоится ли путешествие в один конец?
Планы по колонизации Марса уже давно вынашивают многие космические державы. Сегодня ближе всех к осуществлению проекта подошли американцы. По заявлениям директора NASA, полет на Марс состоится в 2030 году. Не остался в стороне и Илон Маск. В 2018 году он представил космический корабль Crew Dragon, рассчитанный на 7 астронавтов. Илон Маск утверждает, что полет состоится в 2024 году.
Первая частная марсианская миссия
Система состоит из возвращаемой ракеты-носителя, самого космического корабля и танкера для дозаправки на орбите Земли. После запуска многоразовой ракеты с космическим кораблем с людьми и грузом на орбиту, ракета возвратится обратно на Землю за топливом, которое затем доставит обратно на корабль. Такая процедура будет проделана несколько раз, пока на корабле не будет достаточно топлива.
По мнению Маска, для колонизации нужен 1 млн добровольцев. Изначально планировалось, что одна ракета в течение нескольких десятков лет доставит на Марс необходимое количество людей. Но в 2020 году планы изменились: теперь Маск планирует построить 1 тыс. ракет. По плану предпринимателя, они и займутся доставкой колонизаторов и груза.
В одной ракете помещается 100 человек и 100 т груза. План по заселению Марса Маск планирует реализовать к 2050 году. Добровольцы, по словам главы SpaceX, должны быть готовы умереть, потому что эта миссия крайне опасна.
Стоимость отправки одного человека составляет $10 млрд. Маск понимает, что это очень дорого, поэтому стоимость билета будет $200 тыс. В феврале 2021-го SpaceX привлекла $850 млн в результате долевого финансирования. Месяцем ранее, став ненадолго самым богатым человеком планеты, бизнесмен сказал, что продает все свое имущество, чтобы иметь больше средств для реализации проекта.
Лететь планируется на ракетах Starship, двигатель для которой был успешно протестирован в июле 2019 года. Следом начались испытания самого аппарата. Все попытки были неудачными. Ракеты взрывались или разбивались. 4 марта 2021 года прошли очередные испытания. Аппарат смог подняться на высоту 10 км и вернуться на посадочную стойку. Через несколько минут он взорвался.
Читайте также: