Титанотанталовольфрамовые твердые сплавы марки
Твердые сплавы – твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвердых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанных кобальтовой металлической связкой, при различном содержании кобальта или никеля.
титанотанталовольфрамовых марок
К группетанталосодержащих сплавовследует отнести и так называемые сплавы МС, выпуск которых освоен по лицензии, закупленной у фирмы «Sandvik Coromant» (Швеция) (табл. 11.9).
Сплавы марок МС101, МС111, МС121, МС131 и МС146 предназначены для обработки стали и стального литья в различных условиях, сплавы МС211, МС221 и МС241 – для резания труднообрабатываемых материалов, а сплавы марок МС301, МС306, МС312, МС313 и МС321 – для обработки чугуна и цветных металлов. Сплавы марки МС137 и МС318 предназначены для фрезерования стали и чугуна соответственно.
Исследования режущих свойств сплавов МС [17, 65] показали их высокую надежность по сравнению со стандартными сплавами, что связано с повышенной стабильностью физико–механических свойств сплавов МС. Поэтому более высокая стоимость (на 40–60%) сплавов МС по сравнению со стандартными сплавами вполне оправдана высокой стабильностью режущих свойств и эксплуатационной надежностью инструмента, оснащенного пластинами МС.
Таблица 11.9
Основные свойства сплавов группы «МС»
(ТУ 48–19 308–80)
Марка сплава | Сплав–аналог (ГОСТ 3882–74) | Свойства | ||
sи, МПа | r , г/см 3 | Твердость, НVзо | Коэрцитивная сила, кА/м | |
МС111 | Т15К6 | 10,22–10,38 | 1525–1675 | 8,7–11,9 |
МС121 | Т14К8 | 11,6–11,79 | 1475–1625 | 7,2–9,5 |
МС131 | Т5К10 | 11,35–11,51 | 1430–1570 | 8–10,4 |
МС137 | Т14К8 ТТ20К9 | 11,68–11,84 | 1485–1635 | 13,5–15,2 10,2–15,2 |
МС146 | ТТ7К12 | 13,04–13,2 | 1320–1460 | 15,9–23,6 |
МС211 | ВК6М–ТТ10К8Б | 14,7–14,86 | 1590–1680 | 10,3–13,3 |
МС241 | ВК8 | 13,81–13,97 | 1530–1630 | 9,4–11,2 |
МС301 | ВК3М | 14,15–14,25 | 1175–1295 | 20,6–23,6 |
МС306 | ВК6ОМ | 14,95–15,11 | 1760–1940 | 19,8–23,2 |
МС312 | ВК6М, | 12,79–12,95 | 1700–1940 | 15,9–23,2 |
МС318 | ВК6, Т8К7 | 12,8–12,96 | 1575–1725 | 15,2–20,6 |
МС321 | ВК6 | 14.64–14,86 | 1450–1600 | 13,4–15,2 |
МС313 | ВК6М | 14,74–14,94 | 1505–1655 | 13,4–17,3 |
Безвольфрамовые твердые сплавы (БВТС). В связи с высокой дефицитностью основных компонентных составляющих твердого сплава, и прежде всего W и Со, в странах СНГ развернуты широкие изыскания по разработке экономнолегированных беэвольфрамовых твердых сплавов.
Перспективным направлением разработки безвольфрамовых твердых сплавов (БВТС) оказалось создание сплавов на основе карбонитрида и карбида титана с никель–молибденовой связкой.
Сплавы отличаются высокой твердостью, окалиностойкостью, имеют низкий коэффициент трения по стали и пониженную склонность к адгезионному взаимодействию с обрабатываемым материалом, что уменьшает износ инструмента по передней поверхности при обработке стали и позволяет получить при обработке сталей низкую шероховатость обработанной поверхности и высокую размерную точность. В то же время безвольфрамовые сплавы имеют более низкий модуль упругости, а следовательно, и сопротивление упругим и пластическим деформациям, чем вольфрамосодержащие, меньшую теплопроводность и ударную вязкость, поэтому они хуже сопротивляются ударным и тепловым нагрузкам, также отличаются пониженной жаропрочностью, т.е. интенсивно разупрочняются при более низких температурах, чем сплавы типа ТК.
Указанные свойства определили и области рационального применения сплавов при обработке материалов резанием: главным образом чистовая и получистовая обработка при точении и фрезеровании углеродистых и легированных сталей с высокой скоростью резания и относительно небольшим сечением среза взамен титановольфрамовых сплавов.
Эффективно применение безвольфрамовых сплавов в виде сменных многогранных пластин, так как при напайке и заточке из-за низкой теплопроводности возможно появление внутренних напряжений и, как следствие, трещин на пластинах, а также снижение их эксплуатационной стойкости.
Состав и основные свойства промышленных марок БВТС
Марка сплава | Содержание основных компонентов в % (по массе) | Физико-механические свойства сплавов | ||||
TiC | TiCN | Ni | Mo | r , г/cм 3 | sи*, МПа | HRA, не менее |
ТН20 КНТ16 | – | – | 15,0 19,5 | 6,0 6,5 | 5,5–6,0 5,5–6,0 | 90,0 89,0 |
Промышленность страны выпускает две стандартные марки безвольфрамовых сплавов в соответствии с ГОСТ 26530–85 (табл. 11.10). С учетом относительно низких значений теплостойкости и пластической прочности БВТС проведены исследовательские работы по совершенствованию их свойств за счет упрочнения связки или карбонитридной фазы. Результатом таких разработок стало появление новых марок БВТС с улучшенными свойствами по хрупкой и пластической прочности.
Примером совершенствования БВТС могут служить сплавы ЛЦК20, карбонитридная фаза которых легирована цирконием, сплавы ТВ4, ЦТУ и НТН30, связки которых имеют заметно более высокую прочность и теплостойкость за счет легирования соответственно карбидом вольфрама, вольфрамом и карбидами титана и ниобия. Новая группа сплавов этого типа имеет повышенную эксплуатационную надежность и расширенную область применения. В частности, сплавы ТВ4, НТНЗО рекомендуют для черновой обработки стали при фрезеровании и точении (области применения P20–P30).
Состав и некоторые свойства БВТС повышенной прочности показаны в табл. 11.11.
Таблица 11.11
Состав и свойства БВТС повышенной прочности
Марка сплава | Состав, % | r, г/cм 3 | HRA, не менее | sи*, МПа |
TiCN | TiC | NbC | Ni | Mo |
НТНЗО | 19,5 | 10,5 | 6,0–6,5 | 89,5 |
ЦТУ | 6,2–6,8 | 89,5 | ||
ТВ4 | 56,3 | 8,7 | 6,3–6,7 | 89,0 |
Опыт внедрения существующих безвольфрамовых сплавов и прогнозируемое расширение их применения в связи с появлением новых более совершенных марок показывает, что при выпуске требуемой номенклатуры изделий и обеспечении стабильного уровня качественных показателей, около 25–30% объема выпуска вольфрамосодержащих сплавов для обработки стали может быть заменено на безвольфрамовые.
Области применения твердых сплавов.При анализе областей применения марок твердых сплавов, обладающих различными свойствами, обычно используют рекомендации международной организации стандартов ИСО (ISO), которые предусматривают использование сплавов с учетом уровня основных свойств каждой марки (ГОСТ 3882–74) в зависимости от условий обработки (t, S, v, характер операции, обрабатываемый материал, тип формируемой стружки и т.п.). В соответствии с этими рекомендациями твердые сплавы классифицируют на три основные группы резания Р, М, К, которые, в свою очередь, делятся на подгруппы применения в зависимости от условий обработки (табл. 11.12).
Чем больше индекс подгруппы применения, тем ниже износостойкость твердого сплава и допустимая скорость резания, но выше прочность (ударная вязкость), и допустимая подача, и глубина резания (см. табл. 11.12). Таким образом, малые индексы соответствуют чистовым операциям, когда от твердых сплавов требуется высокая износостойкость и малая прочность, а большие индексы соответствуют черновым операциям, т.е. когда твердый сплав должен обладать высокой прочностью. В связи с этим каждая марка имеет свою предпочтительную область применения, в которой она обеспечивает максимальные работоспособность сплава и производительность процесса обработки.
Закономерности изменения механических и эксплуатационных свойств твердых порошковых сплавов с точки зрения металловедения
Порошковые твердые сплавы – это спеченная смесь оптимально подобранных химических элементов. В ее состав входят прочные тугоплавкие компоненты, имеющие низкую эксплуатационную термостойкость (карбиды и карбонитриды вольфрама, титана, тантала), сочетающиеся с пластичным цементирующим (связующим) компонентом: кобальт (Co), никель (Ni, реже молибден (Мо). Уникальные свойства по износостойкости, прочности, пластичности, адгезии и размерной стабильности инструмента обеспечиваются несколькими характеристиками сплавов:
Все вышеперечисленные закономерности характерны для всех металлических сплавов с карбидным, карбонитридным и интерметаллидным упрочнением, в т.ч. и для быстрорежущих сталей.
- Качественный состав упрочняющей фазы, т. е. химический состав ее компонентов. По этому признаку твердые сплавы делятся на следующие основные группы:
- ТК (титановольфрамовые на кобальтовой основе) WC–TiC–Co
- ВК (вольфрамовые на кобальтовой основе) WC–Со
- БВТС (безвольфрамовые) на основе TiС, TiCN с разными связками
- ТТК (титанотанталовольфрамовые на кобальтовой основе) WC–TiC–TaC–Co
Последняя группа сплавов имеет в своей структуре т.н. карбиды смешанного типа. Дело в том, что при спекании, карбид титана и тантала полностью взаимно растворяются друг в друге и частично растворяются в карбиде вольфрама. При этом образуется несколько упрочняющих фаз сплава. Экспериментально установлено, что по сравнению с однофазным упрочнением, сплавы с карбидами смешанного типа имеют болле высокие режущие свойства при всех режимах обработки и типах нагружения инструмента.
Вообще, по увеличению степени полезного влияния на режущие характеристики инструмента, в первую очередь на совместное увеличение износостойкости, твердости и динамических характеристик (KCU), карбиды можно расположить следующим образом:
карбид вольфрама (WC) – карбид титана (TiC) – карбид тантала (TaC)
Карбиды смешанного типа могут располагаться до и после карбида тантала, т.к. их свойства могут изменяться в зависимости от концентрации химических элементов.
Химический состав сплава является определяющим фактором при выборе инструмента для определенных условий обработки и обрабатываемого материала.
На сегодняшний день, главной задачей всех инструментальных производителей является разработка сплавов с одновременно высокими показателями твердости, упругости, прочности, пластичности, ударной вязкости, высокими адгезионными и антифрикционными свойствами. При этом немаловажным дополнительным качеством инструмента, должна являться его низкая стоимость. Это требование заставляет производителей разрабатывать инструментальные материалы из широко распространенных и дешевых металлов, при использовании современных технологий формо- и структурообразования.
Типы твёрдых сплавов
Различают спечённые и литые твёрдые сплавы. Главной особенностью спеченных твердых сплавов является то, что изделия из них получают методами порошковой металлургии и они поддаются только обработке шлифованием или физико-химическим методам обработки (лазер, ультразвук, травление в кислотах и др) так же отлично обрабатываются электро-физическим методом электроэрозии.
Литые твердые сплавы предназначены для наплавки на оснащаемый инструмент и проходят не только механическую, но часто и термическую обработку (закалка, отжиг, старение и др).
Порошковые твердые сплавы закрепляются на оснащаемом инструменте методами пайки или механическим закреплением.
Твердые сплавы различают по металлам карбидов, в них присутствующих:
- вольфрамовые — ВК2, ВК3,ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25;
- титано-вольфрамовые — Т30К4, Т15К6, Т14К8, Т5К10, Т5К12В;
- титано-тантало-вольфрамовые — ТТ7К12, ТТ10К8Б.
По химическому составу твердые сплавы классифицируют:
- вольфрамокобальтовые твердые сплавы (ВК);
- титановольфрамокобальтовые твердые сплавы (ТК);
- титанотанталовольфрамокобальтовые твердые сплавы (ТТК).
Спечённые твёрдые сплавы
Твердые сплавы изготавливают путем спекания смеси порошков карбидов и кобальта. Порошки предварительно изготавливают методом химического восстановления (1-10 мкм), смешивают в соответствующем соотношении и прессуют под давлением 200—300 кгс/см², а затем спекают в формах, соответствующих размерам готовых пластин, при температуре 1400—1500 °C, в защитной атмосфере. Термической обработке твердые сплавы не подвергаются, так как сразу же после изготовления обладают требуемым комплексом основных свойств.
Номенклатура спеченных твердых сплавов
Твердые сплавы условно можно разделить на три основные группы:
- вольфрамосодержащие твердые сплавы
- титановольфрамосодержащие твердые сплавы
- титанотанталовольфрамовые твердые сплавы
Каждая из вышеперечисленных групп твердых сплавов подразделяется в свою очередь на марки, различающиеся между собой по химическому составу, физико-механическим и эксплуатационным свойствам.
Некоторые марки сплава, имея одинаковый химический состав, отличаются размером зерен карбидных составляющих, что определяет различие их физико-механических и эксплуатационных свойств, а отсюда и областей применения.
Свойства марок твердых сплавов рассчитаны таким образом, чтобы выпускаемый ассортимент мог в максимальной степени удовлетворить потребности современного производства. При выборе марки сплава следует учитывать: область применения сплава, характер требовании, предъявляемых к точности обрабатываемых поверхностей, состояние оборудования и его кинематические и динамические данные.
Обозначения марок сплавов построено по следующему принципу:
- 1 группа - сплавы содержащие карбид вольфрама и кобальт. Обозначаются буквами ВК, после которых цифрами указывается процентное содержание в сплаве кобальта. К этой группе относятся следующие марки: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК6ОМ, ВК6КС, ВК6В, ВК8, ВК8ВК, ВК8В, ВК10КС, ВК15, ВК20, ВК20КС, ВК10ХОМ, ВК4В.
- 2 группа - титановольфрамовые сплавы, имеющие в своём составе карбид титана, карбид вольфрама и кобальт. Обозначается буквами ТК, при этом цифра, стоящая после букв Т обозначает % содержание карбидов титана, а после буквы К - содержание кобальта. К этой группе относятся следующие марки: Т5К10, Т14К8, Т15К6, ТЗ0К4.
- 3 группа — титанотанталовольфрамовые сплавы, имеющие в своём составе карбид титана, тантала и вольфрама, а также кобальт и обозначаются буквами ТТК, при этом цифра, стоящая после ТТ % содержание карбидов титана и тантала, а после буквы К - содержание кобальта. К этой группе относятся следующие марки: ТТ7К12, ТТ20К9.
- 4 группа — сплавы с износостойкими покрытиями. Имеют буквенное обозначение ВП. К этой группе относятся следующие марки: ВП3115 (основа ВК6), ВП3325 (основа ВК8), ВП1255 (основа ТТ7К12).
Твердые сплавы применяемые для обработки металлов резанием: ВК6, ВКЗМ, ВК6М, ВК60М, ВК8, ВК10ХОМ, ТЗОК4, Т15К6, Т14К8, Т5К10, ТТ7К12, ТТ20К9.
Твердые сплавы применяемые для бесстружковой обработки металлов и древесины, быстроизнашивающихся деталей машин, приборов и приспособлений: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК8, ВК15, ВК20, ВК10КС. ВК20КС.
Твердые сплавы применяемые для оснащения горного инструмента: ВК6В, ВК4В, ВК8ВК, ВК8, ВК10КС, ВК8В,ВК11ВК,ВК15.
Иностранные производители твердого сплава, как правило, используют каждый свои марки сплавов и обозначения.
Твердые порошковые сплавы с точки зрения металловедения
Читайте обзор структуры, свойств и условий работы основных групп твердых порошковых сплавов, а также о закономерностях изменения механических и эксплуатационных свойств твердых порошковых сплавов с точки зрения металловедения.
Применение и продукция из твердых сплавов
Материал широко распространен в современной промышленности. Развивается и технология производства самих сплавов, улучшается их качество, меняется состав, появляются новые маркировки. Но помимо изменения самого материала, меняются и принципы работы с ним. Появляются новые типы соединений, наносимые на изделия, благодаря чему, они приобретают новые функции и роли в промышленности.
На сегодняшний день твёрдые сплавы применяются:
- В производстве режущего инструмента. Изготовленные из высокопрочных материалов инструменты позволяют повысить качество производства, ускорить его и снизить затраты на брак и закупку материалов. Высокая жаростойкость и прочность позволяют работать на предельных скоростях. Поэтому сплавы гораздо более ценны в производстве инструмента, нежели простая сталь. В их производстве зачастую используют алмазные заготовки, значительно повышающую качество материала и его свойства. К примерам таких инструментов можно отнести резцы, свёрла и т.д.;
- В изготовлении высокопрочных деталей для механических изделий, производственных машин, автомобилей и техники, ножей и лезвий для грейдеров – в механизмах, испытывающих высокие перегрузки и усилия;
- В производстве оборудования, предназначенного для больших нагрузок. Например, рудодобывающее оборудование, буровые установки. Сплавы применяются в опорах промышленных весов и в прочих механизмах, рассчитанных на большие усилия и давления;
- При изготовлении мелких, но ключевых деталей различных механизмов. Например, из данного материала производятся подшипники, клеммы, различные защитные напыления и прочее.
- В производстве различных форм и матриц, при отливке стальных изделий как простых, так и имеющих сложную форму.
- Для механической постобработки сложных материалов (сталь, чугун, цветные металлы, жаростойкие материалы и т.д.).
- При штамповании различных изделий.
Перед закупкой инструмента, деталей или просто исходного материала, в составе которого есть сплавы, необходимо тщательно изучить к какому классу они относятся и какими свойствами обладают. В этом поможет понимание значений маркировок, которые указывают на состав изделия и, как следствие, на его способность выдерживать те или иные нагрузки. Каждый класс материала предназначен для применения в конкретной сфере производства и может быть абсолютно не пригоден для иной, что также следует учитывать.
Состав и характеристики физико-механических свойств титановольфрамовых марок твердых сплавов по ГОСТ 3882–74
Так же, как и у сплавов ВК, предел прочности при изгибе и сжатии, а также ударная вязкость у сплавов ТК увеличиваются с ростом содержания кобальта.
С увеличением содержания углерода в пределах трехфазной области прочность при изгибе растет, а твердость и износостойкость снижаются.
Наличие структурно свободного углерода приводит одновременно к снижению прочности, твердости и износостойкости при резании. Присутствие в сплаве h–фазы снижает предел прочности при изгибе, но повышает твердость и износостойкость при резании.
У сплавов с одинаковым содержанием кобальта и одинаковым размером карбидных фаз предел прочности при изгибе и сжатии, ударная вязкость, пластическая деформация и модуль упругости уменьшаются при увеличении содержания карбида титана.
В соответствии с приведенными закономерностями меняются и режущие свойства сплавов: увеличение содержания кобальта приводит к снижению износостойкости сплавов при резании, а с ростом содержания карбида титана (при постоянном объемном содержании кобальта) повышается износостойкость, но одновременно снижается эксплуатационная прочность. Поэтому такие марки сплавов, как ТЗОК4 и Т15К6, обладающие максимальным запасом пластической прочности, применяют в условиях чистовой и получистовой обработки стали с высокой скоростью резания, малыми и умеренными нагрузками на инструмент. Сплавы Т5К10, Т5К12 с наибольшим содержанием кобальта и запасом хрупкой прочности предназначены для работы в тяжелых условиях ударных нагрузок с пониженной скоростью резания.
Титанотанталовольфрамовые твердые сплавы. Промышленные титанотанталовольфрамовые твердые сплавы (сплавы ТТК) состоят из трех основных фаз: твердого раствора (Ti, W, Та)С, карбида вольфрама и твердого раствора на основе кобальта.
Введение в сплавы карбида тантала улучшает их физико-механические и эксплуатационные свойства, что выражается в увеличении прочности при изгибе и твердости при комнатной и повышенной температурах, увеличении работы деформации при повышенных температурах.
Карбид тантала в сплавах снижает ползучесть, существенно повышает предел усталости трехфазных сплавов при циклическом нагружении, а также повышает термостойкость и стойкость против окисления на воздухе.
Исследование режущих свойств сплавов ТТК показало, что увеличение в сплаве содержания карбида тантала повышает его износостойкость при резании, особенно за счет меньшей склонности к лункообразованию и разрушению под действием термоциклических и усталостных нагрузок.
С учетом отмеченных свойств, сплавы ТТК рекомендуют для тяжелой обработки, резания труднообрабатываемых материалов при значительном термомеханическом нагружении инструмента, а также операций прерывистого резания, особенно фрезерования, отличающихся переменным сечением среза и циклическими термомеханическими нагрузками на режущую часть инструмента.
Наибольшей хрупкой прочностью среди сплавов группы ТТК обладает сплав ТТ7К12, который рекомендуют для обработки стали в особо неблагоприятных условиях (прерывистое точение, строгание, черновое фрезерование). Применение инструмента из сплава ТТ7К12 взамен быстрорежущего инструмента позволяет повысить скорость резания в 1,5–2 раза [99].
Для операций фрезерования рекомендуются сплавы марки ТТ20К9 (для обработки стали) и ТТ8К7 (для обработки чугуна). Для чистового и получистового точения, растачивания и фрезерования серого и ковкого чугуна, цветных металлов, непрерывного точения высокопрочных, нержавеющих сталей, в том числе и термообработанных, а также титановых сплавов предназначен сплав марки ТТ8К6.
Классификация
Как и любые металлические материалы, твердые сплавы имеют собственную классификацию, которая помогает подобрать наиболее подходящий материал для своих целей.
В зависимости от способа получения, сплавы бывают:
Как видно из названия, литые сплавы изготавливают технологией литья. Среди них: стеллиты (которые состоят из хрома, вольфрама, углерода и никеля; как связка используется кобальт), сормайты (состоящие из хрома, углерода и никеля на железной основе), а также твердые сплавы, в которых в качестве основы использован никель. Чаще всего, в процессе литья применяется технология пресса, которая позволяет получить изделия высокого качества, требующие минимальной обработки перед использованием (однако, чаще всего необходимо проведение термической постобработки).
Спеченные сплавы (или металлокерамические), в свою очередь, производятся по технологии порошковой металлургии. Она представляет собой высокоточное производство, благодаря чему, получаемый на выходе материал имеет максимально высокую степень качества и не требует дополнительной обработки. Максимум, что может потребоваться – небольшая шлифовка полученного изделия. Металлокерамическими данные сплавы называют, потому что способ их производства схож с производством керамических изделий.
По химическому составу различают:
- ВК – однокарбидные, вольфрамо-кобальтовые;
- ТК – двухкарбидные, титано-вольфрамо-кобальтовые;
- ТТК – трехкарбидные, титано-тантало-вольфрамо-кобальтовые;
- ТН - безвольфрамовые.
Вольфрамо-кобальтовые
Сплавы на основе карбида вольфрама – наиболее распространённые представители данной группы. К ним относятся BK6 и BK8, упомянутые выше. Сплавы можно разделить ещё на две группы, в зависимости от их состава: содержащие в своём составе вольфрам – как уже говорилось ранее, такие сплавы состоят из карбида вольфрама и ещё минимум одного металла, играющего роль связки (чаще всего таковым является кобальт).
В основном сплавы группы ВК используют для изготовления режущего инструмента. Это резцы, пластины.
Состав и характеристики сплавов ВК
Характеристика физико-механических свойств
Предел прочностипри изгибе
* Буква М означает, что сплав является мелкозернистым, ОМ - особо мелкозернистый.
Из таких материалов получаются высококачественные инструменты, которые используются в промышленности, различных производствах и в быту, изготовление деталей различных конструкций. Это могут быть детали для автомобилей, механических предметов, приборов и любых механизмов. изготовление деталей, требующих высокой жаростойкости.
Титановольфрамовокобальтовые
Группа сплавов ТК производится для иструментов, выполняющих резание сталей, дающих сливную стружку. В основе состава карбид титана и карбид вольфрама. В связке идёт кобальт. Титан дает снижение адгезии со сталью, благодаря этому сплавы группы ТК более износостойкие при обработки сталей. При увеличении карбидов титана повышается твердость и износостойкость, но прочностьснижается.
Характеристика физико-механических свойств
Предел прочности при
Титанотанталовольфрамокобальтовые твердые сплавы
По ГОСТ 3882-74 имеется 5 марок. Титан в составе улучшает свойства и эксплуатационные показатели, выражающиеся в повышении прочности при обычной и повышенной температуре. Благодаря карбиду тантала в составе улучшается износостойкость при резании
Характеристика физико-механических свойств
Безвольфрамовые сплавы
Такие сплавы в СССР появились в 1970 гг. ввиду дефицита вольфрама. По ГОСТ 26530-85 существует две марки безвольфрамовых сплавов на основе карбидов, карбонитридов титана с никель-молибденовой связкой.
Содержание основных компонентов
Эти марки обладают меньшей прочностью и теплостойкости они не могут заменить традиционные вольфрамовые. Сплав КНТ16 хорошо подходит для прерывистого резания. А марка ТН20 может эффективно заменить Т30К4 и Т15К6. Им можно проводить чистовую и получистовую обработку незакаленной стали.
Так или иначе, благодаря своим свойствам сплавы массово применяются во многих производствах.
По классификации ИСО, твердые сплавы делят по областям применения при обработке резанием:
- Р — для стальных отливок, дающих сливную стружку;
- М — труднообрабатываемые стали, сплавы;
- К — обработка чугуна;
- N — обработка алюминия и других цветных металлов и их сплавов;
- S — для обработки жаропрочных сплавов и сплавов на основе титана;
- H — для закаленной стали.
Сплавы группы Р маркируются синим цветом, М — желтым и К — красным цветом
Твердые сплавы
Металлы, отличающиеся повышенной твёрдостью и износостойкостью - это твердые сплавы. Изготавливаются, как правило, из карбидов металлов (титана, хрома, вольфрама и прочих), что делает их особенно стойкими к высоким температурам и механическим воздействиям. Такие сплавы невероятно прочные, а потому, пригодные для различных производств.
Характеристика
Помимо прочности и износостойкости к полезным свойствам данных материалов можно отнести тугоплавкость. При нагреве до 900 - 1150°C твердый сплав сохраняет все свои качества.
Существует специальная маркировка, которая указывает свойства и характеристики сплава. В основе принципа маркирования – буквы, указывающие на наличие того или иного металла и цифры, показывающие его количество в %. Необходимо точно понимать их значение, так как от данных показателей зависит пригодность материала для проведения необходимых работ.
Типы твёрдых сплавов
Различают спечённые и литые твёрдые сплавы. Главной особенностью спеченных твердых сплавов является то, что изделия из них получают методами порошковой металлургии и они поддаются только обработке шлифованием или физико-химическим методам обработки (лазер, ультразвук, травление в кислотах и др) так же отлично обрабатываются электро-физическим методом электроэрозии.
Литые твердые сплавы предназначены для наплавки на оснащаемый инструмент и проходят не только механическую, но часто и термическую обработку (закалка, отжиг, старение и др).
Порошковые твердые сплавы закрепляются на оснащаемом инструменте методами пайки или механическим закреплением.
Твердые сплавы различают по металлам карбидов, в них присутствующих:
- вольфрамовые — ВК2, ВК3,ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25;
- титано-вольфрамовые — Т30К4, Т15К6, Т14К8, Т5К10, Т5К12В;
- титано-тантало-вольфрамовые — ТТ7К12, ТТ10К8Б.
По химическому составу твердые сплавы классифицируют:
- вольфрамокобальтовые твердые сплавы (ВК);
- титановольфрамокобальтовые твердые сплавы (ТК);
- титанотанталовольфрамокобальтовые твердые сплавы (ТТК).
Спечённые твёрдые сплавы
Твердые сплавы изготавливают путем спекания смеси порошков карбидов и кобальта. Порошки предварительно изготавливают методом химического восстановления (1-10 мкм), смешивают в соответствующем соотношении и прессуют под давлением 200—300 кгс/см², а затем спекают в формах, соответствующих размерам готовых пластин, при температуре 1400—1500 °C, в защитной атмосфере. Термической обработке твердые сплавы не подвергаются, так как сразу же после изготовления обладают требуемым комплексом основных свойств.
Номенклатура спеченных твердых сплавов
Твердые сплавы условно можно разделить на три основные группы:
- вольфрамосодержащие твердые сплавы
- титановольфрамосодержащие твердые сплавы
- титанотанталовольфрамовые твердые сплавы
Каждая из вышеперечисленных групп твердых сплавов подразделяется в свою очередь на марки, различающиеся между собой по химическому составу, физико-механическим и эксплуатационным свойствам.
Некоторые марки сплава, имея одинаковый химический состав, отличаются размером зерен карбидных составляющих, что определяет различие их физико-механических и эксплуатационных свойств, а отсюда и областей применения.
Свойства марок твердых сплавов рассчитаны таким образом, чтобы выпускаемый ассортимент мог в максимальной степени удовлетворить потребности современного производства. При выборе марки сплава следует учитывать: область применения сплава, характер требовании, предъявляемых к точности обрабатываемых поверхностей, состояние оборудования и его кинематические и динамические данные.
Обозначения марок сплавов построено по следующему принципу:
- 1 группа - сплавы содержащие карбид вольфрама и кобальт. Обозначаются буквами ВК, после которых цифрами указывается процентное содержание в сплаве кобальта. К этой группе относятся следующие марки: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК6ОМ, ВК6КС, ВК6В, ВК8, ВК8ВК, ВК8В, ВК10КС, ВК15, ВК20, ВК20КС, ВК10ХОМ, ВК4В.
- 2 группа - титановольфрамовые сплавы, имеющие в своём составе карбид титана, карбид вольфрама и кобальт. Обозначается буквами ТК, при этом цифра, стоящая после букв Т обозначает % содержание карбидов титана, а после буквы К - содержание кобальта. К этой группе относятся следующие марки: Т5К10, Т14К8, Т15К6, ТЗ0К4.
- 3 группа — титанотанталовольфрамовые сплавы, имеющие в своём составе карбид титана, тантала и вольфрама, а также кобальт и обозначаются буквами ТТК, при этом цифра, стоящая после ТТ % содержание карбидов титана и тантала, а после буквы К - содержание кобальта. К этой группе относятся следующие марки: ТТ7К12, ТТ20К9.
- 4 группа — сплавы с износостойкими покрытиями. Имеют буквенное обозначение ВП. К этой группе относятся следующие марки: ВП3115 (основа ВК6), ВП3325 (основа ВК8), ВП1255 (основа ТТ7К12).
Твердые сплавы применяемые для обработки металлов резанием: ВК6, ВКЗМ, ВК6М, ВК60М, ВК8, ВК10ХОМ, ТЗОК4, Т15К6, Т14К8, Т5К10, ТТ7К12, ТТ20К9.
Твердые сплавы применяемые для бесстружковой обработки металлов и древесины, быстроизнашивающихся деталей машин, приборов и приспособлений: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК8, ВК15, ВК20, ВК10КС. ВК20КС.
Твердые сплавы применяемые для оснащения горного инструмента: ВК6В, ВК4В, ВК8ВК, ВК8, ВК10КС, ВК8В,ВК11ВК,ВК15.
Иностранные производители твердого сплава, как правило, используют каждый свои марки сплавов и обозначения.
Свойства
Основные свойства твёрдых сплавов: твердость; жаростойкость; прочность; износостойкость;
Однако, стоит понимать, что данные характеристики зависят от соотношения элементов, из которых изготовлен сплав. Так, например, материалы, в названии которых используется сочетание букв «BK» напрямую зависимы от размера от карбида вольфрама. При уменьшении зерна карбида, сплав становится более твёрдым. При этом, велика вероятность уменьшения его прочности. При увеличении зерна происходит обратный процесс – прочность увеличивается, но сплав получается менее твёрдый. Поэтому при закупке данного материала важно понимать значение маркировок, так они напрямую говорят о его свойствах.
Титаносодержащие сплавы более твердые и жаростойкие. Температура их плавления выходит за пределы 1200°C. Кроме того, они меньше подвержены окислению. Из недостатков можно отметить худшую теплопроводность, по сравнению с материалами группы «BK», а также слабую прочность при изгибаниях.Однако эта проблема решается добавлением в состав карбида тантала – сплавы, маркированные как «TTK» гораздо более прочны при работе.
Активному использованию в различных производствах способствует также и тот факт, что твердые металлы, как ни странно, весьма пластичны. Поэтому работать с ними можно как при высоких, так и при низких температурах. Однако, резать, гнуть и проводить прочую механическую работу следует с большой осторожностью в связи с большой ломкостью и слабой прочностью при изгибах. При обработке материала необходимо знать его плотность, так как от этого зависит его прочность. Так, например плотность вольфрамовых сплавов варьируется от 14 до 15 г/см³; титаносодержащих – от 9 до 13,5 г/см³; материала с примесью тантала – от 12 до 13,6г/см³.
От всех перечисленных свойств зависит, где и каким образом могут применяться твердые сплавы.
Примеры маркировки твердых сплавов
По принципу маркировки твердые сплавы делят согласно химическому составу:
- ВК - в составе карбид вольфрама и кобальт. Цифра означает содержание кобальта в процентах. Например это сплав ВК8, ВК10, ВК6
- ТК. Титаносодержащие сплавы, содержащие карбид титана, карбид вольфрама, кобальт. Обозначение буквами ТК. Цифра после буквы Т означает содержание карбида титана в процентах, а после буквы К - процент содержания кобальта. Это сплавы Т5К10, Т14К8, Т15К6, ТЗ0К4
- ТТК. Титано-тантало-вольфрамовые. Сплав включает в себя сразу три металла: титан, вольфрам и тантал и кобальт. Маркируется буквами ТТК. Цифра после ТТ, например «7» указывает на содержание карбидов титана и тантала, цифра после "К" , например «12» - процент кобальта. Марки ТТ7К12, ТТ20К9;
- ТН. Безвольфрамовые. ТНМ20, ТНМ25, ТНМ30.
Твердые сплавы
Твердые сплавы – твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвердых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанных кобальтовой металлической связкой, при различном содержании кобальта или никеля.
Обзор структуры, свойств и условий работы основных групп твердых порошковых сплавов
Механообрабатывающее производство использует твердосплавных инструментов около 35%. Но с помощью таких инструментов снимается около 70% стружки, т. к. эффективность твердосплавной обработки в 3-5 раз больше в сравнении с обработкой быстрорежущими сталями (БРС). При стандартной, цеховой температуре твердые сплавы обладают характерной для них высокой твердостью. Если технологическая температура обработки повышается, твердость начинает снижаться, но и в подобной ситуации она все же больше, чем у быстрорежущих сталей. Для твердосплавного инструмента характерен повышенный предел прочности в момент сжатия (около 6 ГПа) и модуль упругости (от 500 до 700 ГПа). Наравне с этим они обладают относительно небольшой прочностью при изгибающих нагрузках, по сравнению с быстрорезами. Но этот недостаток, в случаях когда это необходимо, компенсируется за счет регулирования размеров инструмента.
Благодаря сочетанию механических и физико-химических свойств, инструменту из твердых сплавов характерны высокие показатели пределов прочности и упругости, увеличенная стойкостью ко всем видам изнашивания, что позволяет значительно увеличить эффективность переработки стальных и чугунных сплавов, тяжелообрабатываемых материалов и цветных металлов. Рассмотрим основные группы твердых сплавов и их свойств с точки зрения металловедения.
Вольфрамокобальтовые твердые сплавы
При аналогичной концентрации кобальта физические, механические и режущие свойства инструмента находятся в прямой зависимости от дисперсности (размера фракции) карбидной фазы, главным образом от размера фракции карбида вольфрама. За счет разработанных технологических способов, возможно производство твердосплавных материалов с фракцией карбидных включений размером от доли до десяти-пятнадцати мкм. В качестве примера можно привести сплав ВК10–ХОМ. Этот материал значительно мелкозернистый вольфрамокобальтовый сплав, который успешно используется при чистовой обработке жаропрочных материалов. Он обладает высокой стойкостью при пластических искажениях и высоком температурном режиме обработки.
Повышение эксплуатационных свойств карбидной и карбонитридной связки является перспективным направлением увеличения эффективности твердых сплавов. Так для получистовой и черновой обработки используется сплав ВРК15, обладающий кобальторениевой связующей фазой. Он характеризуется максимальной устойчивостью к износу, высокой прочностью при высоких температурах резания и минимальной адгезией к обрабатываемым материалам. Инструменты из ВРК15 повышают КПД обработки в 1,5 раза относительно сплава ВК10-ХОМ.
Вольфрамовый твердосплавный режущий инструмент высокоэффективен при переработке чугуна и цветных металлов, но имеет недостаточную устойчивость к износу и эффективность при обработке конструкционных сталей и сталей специального назначения. Эта проблема разрешилась путем добавления в сплав при спекании карбидов тантала и титана. Последний относится к более перспективным, потому что более дешевый. Тантал относится к малораспространенным металлам и соответственно является более дорогим.
Титановольфрамовые сплавы
Титановольфрамовые сплавы, если сравнивать с ВК сплавами, имеют более высокую устойчивость к окислительным процессам, имеют большую теплоустойчивость и твердость, но одновременно с этим имеют пониженные модуль упругости (из-за более высокой твердости карбида титана), электро- и теплопроводность.
Стандартные ТК сплавы классифицируются по составу, который определяется условиями их использования. В них содержится от 5 до 30% карбида титана, кобальта от 4 до10%. Это сплавы марок Т5К10, Т14К8, Т15К6 и др. В сплавах ТК, подобно WC–Co сплавам, с повышением концентрации кобальта повышается вязкость и предел прочности при сжатии. У сплавов, имеющих схожую концентрацию кобальта и имеющих одинаковые фракции карбидных включений, при повышении концентрации TiC вязкость, предел прочности на изгиб и сжатие и модуль упругости снижаются.
С учетом этого изменяются и режущие характеристики сплавов:
- Снижается устойчивость к износу сплавов при увеличении концентрации кобальта
- Растет устойчивость к износу и снижается прочность во время эксплуатации при повышении концентрации TiC
Соответственно сплавы Т15К6 и ТЗОК4 с характерным предельным запасом пластической прочности, используются при получистой и чистовой переработке стали на предельной скорости резания и с незначительными на инструмент нагрузками. Сплавы Т5К12 и Т5К10, обладающие высокой концентрацией кобальта и увеличенным запасом прочности, используются для работы на сниженных скоростях резания и с утяжеленными ударными нагрузками.
Титанотанталовольфрамовые твердые сплавы
За счет добавления карбида тантала (TaC) сплавы приобретают улучшенные механические, физические, эксплуатационные свойства: увеличивается твердость, прочность во время изгиба при повышенных и стандартных температурных режимах. За счет присутствия карбида тантала, у сплавов уменьшается ползучесть, сильно повышается предел усталости 3х-фазных сплавов во время цикличных нагрузок, повышается термоустойчивость и стойкость к окислительным реакциям на воздухе.
ГОСТ 3882-74 предусматривает следующие сплавы этой группы: ТТ10К8Б, ТТ7К12, Т8К7, ТТ8К6, ТТ20К9, концентрация карбида тантала (TaC) составляет 2-12%.
При изучении характеристик ТТК сплавов было обнаружено, что растет устойчивость к износу при резании, если увеличивается концентрация TaC. Сплавы ТТК рекомендовано использовать при резании тяжелообрабатываемых материалов, при серьезных термомеханических нагрузках на инструмент и резании в прерывистом режиме, например при фрезеровании, для которого характерны изменяющееся сечения среза и нагрузки циклического и термического характера.
Танталсодержащими сплавами считаются «МС-сплавы», производство которых осваивалось по лицензии, приобретенной у компании «Sandvik Coromant».
Режущие характеристики сплавов МС имеют максимальную надежность, если сравнивать их с типичными сплавами, благодаря более стабильным механическим и физическим свойствам. Цена на МС сплавы выше на 40-60 процентов, но этот факт компенсируется повышенной стабильностью режущих качеств и надежностью при эксплуатации инструментов.
Безвольфрамовые твердые сплавы
Основные компоненты сплавов (Со и W) являются редкими, поэтому мировые производители ведут разработки по производству альтернативных умеренно-легированных сплавов, в которых не содержится или содержится в незначительных количествах вольфрам. Такие сплавы называются безвольфрамовые. Изготовление сплавов, в основе которых никель-молибденовая связка (КНТ16 и ТН20) и карбидонитриды и карбиды титана, является многообещающим направлением. В ТН20 сплаве содержится никеля 15% и молибдена 6%, остальное карбид титана, а в сплаве КНТ16 содержится никеля 19,5% и молибдена 6,5%, остальное приходится на карбонитрид титана.
Для сплавов характерны высокая прочность, окалиностойкость, минимальный коэффициент трения при обработке стали, уменьшенная адгезия низкий износ рабочей части инструмента. После обработки, сталям характерны низкая шероховатость и повышенная точность размеров.
Характерные свойства безвольфрамовых сплавов определяют область их использования. Они применяются для получистовой и чистовой обработки на максимальных скоростях резания и небольших сечениях среза. На таких режимах обработки эти сплавы можно использовать взамен титанвольфрамовому инструменту. Чаще безвольфрамовые сплавы используются в качестве многогранных резервных пластин, потому что в процессе переточки и напайки, за счет минимальной теплопроводности возникают внутренние напряжения, в результате чего на пластинах образуются трещины, снижается стойкость при эксплуатации. Но и эта проблема может быть решена при правильно подобранных технологических режимах ремонта, поэтому развитие этих сплавов имеет огромный потенциал.
Читайте также: