Марки титановых деформируемых сплавов
В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.
По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза - железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti - существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.
Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10 -8 до 80·10 -6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан - парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила - его восприимчивость существенно увеличивается с температурой.
Физические и механические свойства
Свойство | Титан |
---|---|
Атомный номер | 22 |
Атомная масса | 47,00 |
Плотность при 20°С, г/cм 3 | 4,505 |
Температура плавления, °С | 1668 |
Температура кипения, °С | 3260 |
Скрытая теплота плавления, Дж/г | 358 |
Скрытая теплота испарения, кДж/г | 8,97 |
Теплота плавления, кДж/моль | 18,8 |
Теплота испарения, кДж/моль | 422,6 |
Молярный объем, см³/моль | 10,6 |
Удельная теплоемкость при 20°С, кДж/(кг·°С) | 0,54 |
Удельная теплопроводность при 20°С, Вт/(м·К) | 18,85 |
Коэффициент линейного термического расширения при 25°С, 10 -6 м/мК | 8,15 |
Удельное электросопротивление при 20°С, Ом·см·10 -6 | 45 |
Модуль нормальной упругости, гПа | 112 |
Модуль сдвига, гПа | 41 |
Коэффициент Пуассона | 0,32 |
Твердость, НВ | 130. 150 |
Цвет искры | Ослепительно-белый длинный насыщенный пучок искр |
Группа металлов | Тугоплавкий, легкий металл |
Химические свойства
Свойство | Титан |
---|---|
Ковалентный радиус: | 132 пм |
Радиус иона: | (+4e) 68 (+2e) 94 пм |
Электроотрицательность (по Полингу): | 1,54 |
Электродный потенциал: | - 1,63 |
Степени окисления: | 2, 3, 4 |
Марки титановых деформируемых сплавов
примечание к таблице изложить в новой редакции:
1. Массовая доля элементов максимальная, если не указаны пределы.
2. Массовую долю водорода указывают в нормативной документации на конкретные виды полуфабрикатов".
Стандарт дополнить разделами 11-14:
"11. Для сплавов марок ПТ-1М, 3М, 2В, 5В, 14, 19, 27, 37, 40 допускается введение модифицирующих химических элементов до 0,003%. Сплавы, модифицированные бором, дополнительно маркируют индексом Б.
Бор вводят в сплавы в соответствии с расчетным составом и фактическое содержание его не определяют.
12. В сплаве марки 5В содержание циркония в сумме с прочими примесями не должно превышать 0,3%.
13. В сплавах марок 3М и 19 содержание ванадия и олова допускается не более 0,15% (в сумме).
14. Для сплавов марок ПТ-1М, 3М, 2В, 5В, 14, 19, 27, 37, 40 допускается сужение пределов по содержанию основных легирующих элементов по нормативной документации на конкретные виды полуфабрикатов".
Марки титановых деформируемых сплавов
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ТИТАН И СПЛАВЫ ТИТАНОВЫЕ ДЕФОРМИРУЕМЫЕ
Wrought titanium and titanium alloys. Grades
ГОСТ
19807-91
Дата введения 01.07.92
Требования настоящего стандарта являются обязательными.
2. Марки и химический состав титана и титановых сплавов должны соответствовать приведенным в таблице.
Массовая доля водорода указана для слитков.
3. В титане марки ВТ1-00 допускается массовая доля алюминия не более 0,30 %, в титане марки ВТ1-0 - не более 0,70 %.
4. В плоском прокате из сплава марки ВТ14 толщиной до 10 мм массовая доля алюминия должна быть 3,5 - 4,5 %, а в остальных видах полуфабрикатов - 4,5 - 6,3 %.
5. В сплаве марки ВТ3-1, предназначенном для изготовления штамповок лопаток и лопаточной заготовки, верхний предел массовой доли алюминия должен быть не более 6,8 %.
6. В сплаве марки ПТ-3В массовая доля циркония в сумме с прочими примесями не должна превышать 0,30 %.
7. Во всех сплавах, содержащих в качестве легирующего элемента молибден, допускается частичная замена его вольфрамом в количестве не более 0,3 %.
Суммарная массовая доля молибдена и вольфрама не должна превышать норм, предусмотренных таблицей для молибдена.
10. В графу «Сумма прочих примесей» входят элементы, оговоренные в пп. 8 и 9, а также другие элементы, приведенные в таблице, но не регламентированные как примеси.
Марки титана и сплавов
В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.
Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.
Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.
Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий.
Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.
Титановый сплав ВТ3-1 относится к системе Ti - Al - Cr - Mo - Fe - Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 - 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.
1 Область применения
Необходимость проведения термической обработки и ее режимы определяются конкретными условиями изготовления и эксплуатации арматуры и должны оговариваться в конструкторской документации.
В соответствии с требованиями настоящего стандарта и конструкторской документации изготовителям арматуры следует разрабатывать производственно-технологическую документацию (ПТД) на термическую обработку конкретных деталей применительно к имеющемуся оборудованию. Для заготовок (деталей) арматуры атомных станций (АС) ПТД на термическую обработку следует разрабатывать в соответствии с требованиями настоящего стандарта и НП-089.
Рекомендуемые температуры применения титановых сплавов приведены в приложении А.
2 Нормативные ссылки
2.1 В настоящем стандарте использованы нормативные ссылки на следующие государственные стандарты и нормативные документы:
ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности.
ГОСТ 12.2.063-2015 Арматура трубопроводная. Общие требования безопасности
ГОСТ 12.3.002-75 ССБТ. Процессы производственные. Общие требования безопасности.
ГОСТ 12.3.004-75 ССБТ. Термическая обработка металлов. Общие требования безопасности.
ГОСТ 12.3.009-76 ССБТ. Работы погрузочно-разгрузочные. Общие требования безопасности.
ГОСТ 12.4.010-75 ССБТ. Средства индивидуальной защиты. Рукавицы специальные. Технические условия.
ГОСТ 12.4.011-89 ССБТ. Средства защиты работающих. Общие требования и классификация.
ГОСТ 12.4.021-75 ССБТ. Системы вентиляционные. Общие требования.
ГОСТ 12.4.253-2013 (EN 166:2002) ССБТ. Средства индивидуальной защиты глаз. Общие технические требования
ГОСТ 17.1.3.13-86 Охрана природы. Гидросфера. Общие требования к охране поверхностных вод от загрязнения.
ГОСТ 19807-91 Титан и сплавы титановые деформируемые. Марки
ГОСТ Р ИСО 9612-2013 Акустика. Измерения шума для оценки его воздействия на человека. Метод измерений на рабочих местах.
ОСТ 1 92077-91 Сплавы титановые. Марки.
СТ ЦКБА 010-2004 Арматура трубопроводная. Поковки, штамповки и заготовки из проката. Технические требования.
ТУ 1825-582-075110017-2005 Прутки катаные из титанового сплава марки ВТ16 для атомной энергетики. Технические условия.
НП-089-15 Федеральные нормы и правила в области использования атомной энергии «Правила устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок».
ПОТ Р М-005-97 Правила по охране труда при термической обработке металлов.
2.2 Перечень документов, применяемых для АС и военно-морского флота (ВМФ) приведен в приложении Б.
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по соответствующему указателю стандартов, составленному по состоянию на 1 января текущего года. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
Достоинства / недостатки
-
Достоинства:
- малая плотность (4500 кг/м 3 ) способствует уменьшению массы выпускаемых изделий;
- высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
- необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
- удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
-
Недостатки:
- высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
- активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
- трудности вовлечения в производство титановых отходов;
- плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
- высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
- плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
- большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.
3 Термическая обработка заготовок (деталей)
3.1 Для титановых а-сплавов применяется два вида термической обработки:
3.2 Полный отжиг проводится с целью завершения формирования структуры сплавов в результате процесса рекристаллизации, выравнивания структурной неоднородности, механических свойств сплавов, а также снятия внутренних напряжений.
Полный отжиг состоит из нагрева до температуры свыше температуры начала рекристаллизации, но ниже температуры полиморфного превращения, выдержки при указанной температуре и последующего охлаждения на спокойном воздухе. Заготовки (полуфабрикаты) и детали из титана и его сплавов следует подвергать полному отжигу, в следующих случаях:
- полуфабрикаты не подвергались термообработке на предприятии-изготовителе;
- заготовки (детали) после горячей гибки и штамповки.
3.3 Неполный отжиг производится для снятия внутренних напряжений, образовывавшихся в процессе механической обработки: правки, шлифовки и т.д. при температуре ниже температуры рекристаллизации.
Неполному отжигу следует подвергать заготовки (детали) при наличии указаний в технологической документации.
3.4 Температура полного и неполного отжига всех сплавов (кроме ВТ16) приведена в таблице 1.
Рекомендуемое время выдержки полного отжига приведено в таблице 2.
Время выдержки при температуре неполного отжига составляет от 30 минут до 4 часов в зависимости от марки сплава и сложности детали и указывает в технических требованиях чертежа.
3.5 Для сплава марки ВТ16 применяется два вида термической обработки:
- режим 1: полный отжиг;
- режим 2: упрочняющая термическая обработка (закалка в воде, старение).
Режимы термической обработки сплава ВТ16 приведены в таблице 3.
Листы и детали из них
Прутки, поковки, профили и детали из них
Посадка в печь при температуре 850 - 890 °С.
Посадка в печь при температуре 750 - 800 °С.
Примечание - Охлаждение производится на воздухе.
Максимальная толщина (диаметр), мм
1 Если одна садка состоит из деталей различных размеров, то она отжигается по режиму детали с максимальным толщиной (диаметром). Разница в толщине (диаметрах) деталей или заготовок, помещенных в одной садке, не должна превышать 30 мм;
2 Для прутков из сплавов 3М и ПТ-3В выдержка при температуре отжига производиться из расчета полминуты на мм диаметра (толщины), но не менее 30 минут и не более 2 часов.
Режимы термической обработки
Режим 1 (полный отжиг):
Отжиг при температуре 770 °С - 790 °С, выдержка 2 часа, охлаждение в печи со скоростью 1 °С/мин. - 5 °С/мин, до 500 °С, далее на воздухе;
Режим 2 (упрочняющая термообработка):
а) Отжиг при температуре 785 °С - 815 °С, выдержка 2 часа, охлаждение с печью со скоростью 2 °С/мин. - 4 °С/мин, до 500 °С, далее на воздухе;
б) Закалка при температуре 810 °С - 830 °С, выдержка 2 часа, охлаждение в воде;
в) Старение при температуре 500 °С - 580 °С, выдержка 4 - 10 часов, охлаждение на воздухе
Примечание - В случае поставки сплавав отожженном состоянии отжиг перед закалкой не требуется.
Области применения
Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.
По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.
Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.
Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.
Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.
Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.
Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.
Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.
4 Общие технологические указания по термообработке
4.1 Нагрев заготовок (деталей) следует проводить в электрических печах с автоматическим регулированием температуры. При невозможности производить термическую обработку в электрических печах разрешается использовать газовые печи, оборудованные самопишущими приборами для регистрации и контроля температуры. При термической обработке в газовой печи атмосфера печи должна быть слабо окисленной (коэффициент избытка воздуха 1,1 - 1,3).
4.2 Не допускается производить термическую обработку в селитовых ваннах и мазутных печах.
4.3 Нагрев готовых деталей рекомендуется производить в печах с защитной атмосферой или в вакууме.
Нагрев оксидированных деталей в вакууме не допускается.
4.4 Печное оборудование должно обеспечивать возможность строгого соблюдения заданных тепловых режимов по перепаду температурного поля, скорости нагрева, охлаждения и температуре выдержки.
В рабочем пространстве печи перепад температур не должен превышать ±15 °С от заданной.
4.5 Заготовки (детали) следует загружать в печь прогретую до температуры отжига и располагать в один ряд по площади рабочей зоны печи.
Размеры рабочего пространства печи должны обеспечивать свободное размещение в нем нагреваемых заготовок (деталей), свободный доступ горячего воздуха ко всем заготовкам (деталям).
4.6 Перед термической обработкой под печи необходимо тщательно очистить от окалины и грязи.
4.7 На заготовках (деталях), подвергаемых полному отжигу, следует предусмотреть припуск не менее 0,5 мм на сторону.
4.8 Время прогрева заготовок (деталей) до заданной температуры отжига рекомендуется устанавливать в зависимости от толщины или диаметра нагреваемого металла в пределах, указанных в таблице 5.
Диаметр или толщина заготовки (детали), мм
Примечание - В каждом отдельном случае конкретное время прогрева устанавливается в зависимости от мощности печи, величины садки и толщины заготовки или детали.
4.9 Требования безопасности к проведению термической обработки приведены в разделе 7 настоящего стандарта.
5 Контроль термической обработки
5.1 При термической обработке заготовок (деталей) следует контролировать соблюдение требований ПТД и чертежей деталей, а для изделий АС так же «Правил АЭУ»:
- методов и видов термической обработки;
- применяемого термического оборудования;
- последовательности и порядка выполнения термической обработки и отдельных ее этапов;
- режимов термической обработки (температуры печи при загрузке, скорости нагрева, температуры и продолжительности выдержки, условий, среды или скорости охлаждения);
- методов и порядка контроля температурных режимов (расположение термопар или других устройств для измерения температуры и продолжительности выдержки, условий, среды или скорости охлаждения);
- методов и порядка контроля температурных режимов (расположение термопар или других устройств для измерения температуры, их количество и т.п.);
- других параметров, контроль которых предусмотрен в ПТД.
5.2 Печные агрегаты, в которых изделия подвергаются термической обработке, должны обеспечить распределение температуры в рабочей части печи в указанных пределах согласно режиму термической обработки.
Все печные агрегаты должны по установленному графику (инструкциям) проходить проверку на распределение температуры по поду и высоте печи.
5.3 После ремонта печного агрегата, а так же при замене нагревателей, следует производить регулирование печи с контрольной проверкой. При проверке устанавливается рабочая зона печи, в пределах которой можно располагать детали и заготовки при термической обработке.
5.4 Для контроля режимов термической обработки деталей изделий, предназначенных для Министерства обороны РФ и АС следует использовать термоэлектрические преобразователи (термопары) с устройствами для автоматической записи параметров режима.
В журнале проведения контроля термической обработки и на диаграмме должны быть указаны данные для однозначного восстановления режима термической обработки.
5.5 Объем контроля качества изделий, прошедших термическую обработку, и сдаточные характеристики устанавливаются чертежом в соответствии с СТ ЦКБА 010.
5.6 При отсутствии в чертеже требования по контролю твердости или механических свойств термически обработанные детали или заготовки проходят контроль твердости по гр. II СТ ЦКБА 010. Твердость должна соответствовать нормам, указанным в приложении В.
6 Оформление документации
6.1 Необходимость проведения термической обработки деталей и заготовок должна быть указана в чертежах со ссылкой на настоящий стандарт.
Примеры
6.2 Фактический режим термической обработки и результаты замеров твердости заготовок (деталей) фиксируется в журнале термического цеха с указанием обозначений чертежей деталей и изделия.
6.3 После выполнения термической обработки в журнале должны быть зафиксированы номер садки и номер печи, дата проведения термической обработки.
7 Требования безопасности при проведении термической обработки и охраны окружающей среды
7.1 При поведении термической обработки заготовок (деталей) трубопроводной арматуры опасными факторами являются:
- требования по обеспечению нормальных санитарно-гигиенических условий;
- требования к транспортировке.
Термическая обработка деталей, заготовок и изделий должна производится в соответствии с требованиями: ГОСТ 12.3.004, ПОТ Р М-005 и «Правил по охране труда при эксплуатации электроустановок.
7.2 Все рабочие, служащие и инженерно-технические работники термических цехов и участков должны проходить инструктаж по безопасности труда и пожарной безопасности.
7.3 Нагретые в процессе термической обработки изделия и детали необходимо размещать в местах, оборудованных эффективной вытяжной вентиляцией или в специально оборудованных охладительных помещениях.
7.4 Погрузка изделий и деталей массой более 20 кг на транспортные средства и загрузка их должна осуществляться погрузочно-разгрузочными устройствами. Для транспортирования этих изделий и деталей в цехах следует применять электрокары, подвесные конвейеры и другие виды транспорта.
7.5 Работающие в термических цехах должны пользоваться средствами индивидуальной защиты, соответствующие требованиям ГОСТ 12.4.011.
7.6 При проведении термической обработки необходимо обеспечить соблюдение норм законодательства относительно охраны труда и охраны окружающей среды за счет установления соответствующих требований к персоналу, средствами индивидуальной защиты и требований ко всему комплексу производственного процесса, предусмотренных стандартами: ГОСТ 12.0.003; ГОСТ 12.1.018; ГОСТ 12.2.003; ГОСТ 12.2.063; ГОСТ 12.3.002; ГОСТ 12.3.009; ГОСТ 12.4.010; ГОСТ 12.4.021; ГОСТ 12.4.253; ГОСТ 17.1.3.13; ГОСТ Р ИСО 9612.
Приложение А
(рекомендуемое)
Температура применения титана и титановых сплавов
Титан ВТ14
Особенности термообработки титана ВТ14 (и близких сплавов типа ВТ16): свойства двухфазных а + в - сплавов после закалки зависят от температуры нагрева под закалку. Так, для сплава ВТ14 при температуре закалки 700° С структура состоит из а + в-фаз. С повышением температуры закалки количество в-фазы непрерывно увеличивается. При 850°С в-фаза становится настолько нестабильной, что при закалке частично переходит в мартенситную а`-фазу. При закалке с 900° С в-фаза практически не фиксируется. Максимальная прочность сплава ВТ14 после старения достигается при температурах закалки 900-940° С, а для сплава ВТ16 - при 860° С. Для обоих сплавов эти температуры соответствуют границе перехода а + в → в.
Второй стадией упрочняющей термической обработки является старение, т. е. повторный нагрев до температур ниже температуры закалки (450-650°С). Упрочнение в процессе старения вызывает распад нестабильных фаз, зафиксированных закалкой с выделением дисперсных частиц (например, а-фазы или интерметаллидной фазы). При этом образуются термодинамически более устойчивые структуры по сравнению с теми, которые были получены при закалке.
Кинетика процессов старения в закаленных сплавах зависит от многих факторов, из которых основными являются: система легирования, концентрация легирующих элементов, исходное соотношение в- и а-фаз, температура, при которой происходит старение, и др.
Экспериментальные данные показывают, что с увеличением содержания в сплаве в-стабилизирующего элемента до критического состава повышается прочность сплава в закаленном и состаренном состояниях. Сплавы критического состава могут быть термически обработаны до наибольшей прочности. Основными фазами в структуре закаленных сплавов являются внестаб и а`. Поэтому их распад в процессе старения оказывает решающее влияние на свойства сплава.
Образование конечных равновесных структур является завершающей стадией промежуточных процессов. Например, после старения могут быть зафиксированы только две фазы - встаб и а, Хотя на промежуточной стадии распад в-фазы шел с образованием ω-фазы. В этом случае различают три стадии: период предвыделения; образование ω - фазы (и других промежуточных фаз); переход метастабильных промежуточных фаз (в том числе ω - фазы) в стабильные фазы.вв
Период предвыделения характеризуется образованием концентрационной субмикронеоднородности пересыщенного твердого в-раствора в результате диффузионных процессов. В этот период в-фаза подготовляется в распаду.
Для сплавов с элементами, не образующими эвтектоидов, процессы старения в случае образования ω-фазы на промежуточной стадии при температуре ниже 500° С могут быть представлены схемой
При более высоких температурах старения происходит диффузионное в→а-превращение.
В разных сплавах, несмотря на то, что конечные продукты распада одинаковы - а + в, старение может протекать различно. Это явление характерно, например, для двухфазных а + в-сплавов ВТ14 и ВТ16.
Сплав ВТ14, состоящий после закалки из смеси фаз в и а`, распадается по схеме
В сплаве ВТ16 после закалки фиксируются а"- и в-фазы. Распад а"-фазы при старении протекает по схеме
Из диаграммы изотермического превращения титановых сплавов следует, что устойчивость нестабильной в-фазы меняется по закону С-образной кривой.
Ф. Л. Локшин, исследуя процессы изотермического распада Р-фазы в сплавах ВТЗ-1, ВТ14, ВТ16 и ВТ15, установил, что в зависимости от химического состава твердого раствора диаграммы изотермического превращения в титановых сплавах можно разделить на две группы: с одной и двумя С-образными кривыми. Одну С-образную кривую имеют сплавы, с концентрацией легирующих элементов больше критической (например, сплав ВТ 15). Две С-образные кривые характерны для сплавов, у которых после закалки из в-области получается мартенситная структура (например, сплавы ВТЗ-1, ВТ14, ВТ16).
Одним из резервов повышения прочности титановых сплавов является применение сплавов критического состава. Эти сплавы очень чувствительны к термической обработке, особенно к скорости охлаждения с высокой температуры. В зависимости от требований, предъявляемых к конструкции, сплавы можно упрочнять на очень высокую прочность (δв= 150-170 кгс/мм 2 ) или на высокую прочность и удовлетворительную пластичность.
В. Н. Моисеев с сотрудниками установили, что характер изменения прочности двухфазных сплавов, закаленных из в- или а + в-области, или закаленных и состаренных, представляет собой кривую с максимумом вблизи критических составов.
В США применяют сплав критического состава: Ti - 16%, V - 2,5 А1. Как правило, сплавы критического состава обладают низкой термостабильностью и их используют в качестве конструкционного материала для узлов, не работающих при высокой температуре.
Термообработка титана ВТ14 после сварки: сварные соединения сплава ВТ14 отжигают при температурах 750-850° С. Нагрев сварных соединений сплава ВТ14 при 830° С в течение 15 мин устраняет интеркристаллитные трещины, которые обнаружены в швах и околошовной зоне после приложения нагрузки сразу после сварки. Отжиг необходим и для тонколистовых конструкций, сваренных без присадочной проволоки. Отжиг при 750° С емкостей из сплава ВТ14 толщиной 2 мм позволил получить вк/вобр>1. Однако по данным А. И. Хорева и Б. А. Дроздовского чувствительность к образованию трещин в швах сплава ВТ14 даже после отжига на 20-30% выше, чем у основного металла. На этом основании ими сделан вывод о необходимости во всех случаях располагать швы на утолщениях.
Проведены исследования влияния отжига на свойства сварных соединений сплава ВТ14 толщиной 12 и 24 мм, выполненных электронным лучом. Свойства сварных соединений в состоянии после сварки и отжига приведены в табл. 26.
Как видно из табл. 26, соединения после сварки равнопрочны основному металлу. Ударная вязкость при толщине образцов 12 мм уменьшилась более чем в 3 раза (до 3,5 кгс•м/см 2 при значениях для основного металла 12 кгс•м/см 2 ). Отжиг позволяет повысить ан сварных соединений до 7,5-8 кгс-м/см 2 .
Сварные соединения сплава ВТ14 толщиной 24 мм следует отжигать при более высокой температуре (>900° С), что, по-видимому, вызвано большим содержанием алюминия (5,1%) в основном металле.
Повышение ударной вязкости сварных соединений при отжиге обусловлено структурными изменениями в металле шва. В состоянии после сварки швы мелкозернисты с дисперсными иглами а`-фазы внутри зерен (рис. 44). Отжиг способствует образованию более равновесной двухфазной структуры с более крупными продуктами внутризеренного распада (рис. 45).
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
s в | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | - температура, при которой получены свойства, Град | |
s T | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м 3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σ t Т | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Титан и сплавы титановые деформируемые. Марки *
1. Настоящий стандарт устанавливает марки титана и титановых деформируемых сплавов, предназначенных для изготовления полуфабрикатов (листов, лент, фольги, полос, плит, прутков, профилей, труб, поковок и штампованных заготовок) методом деформации, а также слитков.
Требования настоящего стандарта являются обязательными.
3. В титане марки ВТ 1-00 допускается массовая доля алюминия не более 0,30%, в титане марки ВТ1-0 — не более 0,70%.
4. В плоском прокате из сплава марки ВТ14 толщиной до 10 мм массовая доля алюминия должна быть 3,5—4,5 %, а в остальных видах полуфабрикатов — 4,5—6,3 %.
5. В сплаве марки ВТЗ-1, предназначенном для изготовления штамповок лопаток и лопаточной заготовки, верхний предел массовой доли алюминия должен быть не более 6,8 %.
6. В сплаве марки ПТ-ЗВ массовая доля циркония в сумме с прочими примесями не должна превышать 0,30 %.
7. Во всех сплавах, содержащих в качестве легирующего элемента молибден, допускается частичная замена его вольфрамом в количестве не более 0,3 %. Суммарная массовая доля молибдена и вольфрама не должна превышать норм, предусмотренных таблицей для молибдена.
8. Во всех сплавах, не содержащих в качестве легирующих элементов хром и марганец, массовая доля последних не должна превышать 0,15 % (в сумме).
9. Массовая доля меди и никеля в титане и во всех сплавах должна быть не более 0,10% (в сумме), в том числе никеля не более 0,08 %.
2.4. Механические свойства труб при растяжении должны соответствовать указанным в табл. 2.
* На странице представлена выдержка из ГОСТ 19807-91 "Титан и сплавы титановые деформируемые. Марки"
телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95
Читайте также: