Марки сплавов алюминия расшифровка
Характеристика и применение алюминия АМц: Коррозионно-стойкие сплавы на основе систем Al—Мn и Аl—Mg. Сплавы типа АМц, АМг2, АМг6 не упрочняются термической обработкой. Они отличаются высокой пластичностью, хорошей свариваемостью и высокой коррозионной стойкостью. Обрабатываемость резанием улучшается с увеличением степени легированности сплавов. Сплавы используются в отожженном, нагартованном и полунагартованном состояниях.
Применяются для изделий, получаемых глубокой вытяжкой, сваркой, от которых требуется высокая коррозионная стойкость (трубопроводы для масла и бензина, радиаторы тракторов и автомобилей, сварные бензобаки), а также для заклепок, корпусов и мачт судов, узлов лифтов и подъемных кранов, рам транспортных средств и др.
Коррозионные свойства сплава АМц: сплав АМц - наиболее распространенный сплав системы А1-Мn - в отожженном состоянии имеет коррозионную стойкость, близкую к коррозионной стойкости чистого алюминия. Введение в сплав марганца благоприятно влияет в связи с тем, что он образует с железом интерметаллические соединения (Мn, Fe)Al, AlFeMnSi и другие с достаточно отрицательным электродным потенциалом и тем самым нейтрализует катодное влияние железа и повышает защитные свойства оксидной пленки на алюминии. Этим можно объяснить, что иногда в атмосферных условиях коррозионная стойкость сплава АМц становится выше коррозионной стойкости алюминия. Положительная роль интерметаллических соединений проявляется также в образовании структурной анизотропии, которая способствует торможению развития коррозии в направлении, перпендикулярном поверхности полуфабриката.
В то же время на сплаве АМц проявляется и отрицательная роль коррозионной анизотропии. Если нагартовка повышает коррозионную стойкость алюминия (повышается сопротивление питтинговой коррозии), то для сплава АМц она может уменьшать ее - появляются предпосылки к расслаивающей коррозии. Эта тенденция увеличивается пропорционально степени нагартовкн и ее связывают с образованием микронадрывов вблизи твердых интерметаллических включений МnА16. Поэтому введение в сплав большого количества других элементов, способствующих образованию интерметаллических соединений, например титана, ухудшает его коррозионную стойкость в нагартованном состоянии. Однако с учетом изложенных выше закономерностей, по-видимому, более существенное влияние на расслаивающую коррозию сплава АМц могут оказывать интерметаллидные соединения марганца с железом в качестве катодов, поскольку концентрация последнего в сплаве достаточно велика (до 0,7 %).
В полунагартованном состоянии, особенно при условии получения листов по схеме НТМО, т.е. частичным отжигом, чувствительность сплава АМц к расслаивающей коррозии мала. По существу коррозия развивается по питтинговому механизму только в местах развития коррозионных очагов наблюдается локальное вспучивание металла, которое отмечается и для многих других сплавов, имеющих структурную анизотропию. Глубина коррозии при этом не больше, а, как правило, даже меньше вследствие положительного эффекта коррозионой анизотропии. По этой причине такое локальное отслаивание не оказывает отрицательного влияния на долговечность конструкций. Оно может только оказывать влияние на декоративный вид анодированных конструкций вследствие локального нарушения анодно-оксидной пленки. Увеличение степени деформации при нагартовке приводит к усилению интенсивности расслаивающей коррозии. Хотя и в этом случае опасность расслаивающей коррозии не достигает таких пределов, как для высоколегированных сплавов, однако в промышленной атмосфере повышенной агрессивности степень РСК достаточно велика.
Увеличение содержания меди до 0,2 % повышает сопротивление расслаивающей коррозии нагартованных полуфабрикатов из сплавов системы Аl-Мn. По-видимому, введение меди в сплав облагораживает потенциал пробоя и вследствие этого уменьшает вероятность зарождения и распространения подповерхностной коррозии вблизи катодных интерметаллическнх фаз.
Особенности прессования алюминиевых сплавов АМц (и подобных): все алюминиевые сплавы, в некоторой степени условно, можно разделить на три группы.
К первой относятся технический алюминий и малолегированные сплавы типа АД31, АМц и др., которые во всем диапазоне температур горячего прессования без смазки допускают (при прочих равных условиях) высокие скорости истечения (до 50—100 м/мин) без образования поверхностных трещин.
Ко второй группе относятся сплавы типа АВ, 01915, АМг2 и др. Эти сплавы допускают средние скорости истечения (5— 20 м/мин).
Третья группа — высоколегированные сплавы и сплавы с повышенным содержанием меди, которые склонны к образованию трещин, и при прессовании их без смазки возможны только низкие скорости истечения (0,5—5 м/мин). Типичные сплавы этой группы — АМг6, Д16, В95 и др.
Наряду с указанными выше факторами при определенных условиях для скорости истечения существуют и другие ограничения.
Так, при прессовании сплавов первой группы ограничения скорости истечения могут быть вызваны техническими возможностями оборудования. Особенно это связано со скоростными характеристиками гидропривода, так как в общем случае развиваемые им скорости движения прессового инструмента и давление (при прочих равных условиях) связаны между собой строгой зависимостью — повышение скорости уменьшает давление, передаваемое на инструмент. При этом давление прессования будет равно развиваемому прессом при определенной скорости движения инструмента и дальнейшее повышение скорости становится невозможным.
Кроме того, ограничения скорости истечения металла могут создавать и другие факторы, как например производительность уборочных устройств, возможности системы регулятора скорости быстро увеличивать ее в начале и уменьшать в конце рабочего хода, особенно при короткой длине заготовок, и т. д.
Повышению скоростей истечения при прессовании алюминиевых сплавов способствует:
1. Снижение температурного интервала нагрева заготовок перед прессованием.
2. Проведение гомогенизации литых заготовок (особенно для сплавов второй и третьей группы).
3. Применение технологических смазок и покрытий инструмента, снижающих контактное трение, что повышает для третьей группы сплавов скорость истечения в 2—3 раза.
4. Применение конструкций матриц (особенно конструкций каналов), которые наиболее полно выравнивают скорости истечения отдельных элементов прoфилей.
5. Применение технологических напусков в виде ребер жесткости при прессовании тонкостенных и широкополочных профилей.
6. Применение местного охлаждения канала матрицы, снижающее температуру выходящего изделия, но не снижающее существенно температуру в пластической зоне.
7. Создание противодавления за счет меньшей конусности канала матрицы или приложения внешней силы, что снижает растягивающие напряжения в поверхностных слоях изделий.
Указанные и другие мероприятия, вытекающие из анализа рассмотренных выше особенностей течения металла при прессовании алюминиевых сплавов и факторов, влияющих на скорость истечения, позволяют в отдельных случаях значительно превысить указанные скорости истечения для каждой группы сплавов.
Конструкции прессового инструмента
Большое, а иногда и решающее влияние на качество поверхности, точность размеров, допустимые скорости истечения прессуемых изделий и другие показатели оказывает конструкция матрицы, в частности форма ее канала, конструкция иглы и пресс-шайбы.
К технологическим элементам конструкции инструмента относятся:
1. Форма и размеры выходного сечения канала матрицы, которые должны учитывать упругие, деформационные и температурные изменения его в процессе прессования, упругую деформационную и термическую усадку прессуемого профиля и внеконтактную
пластическую деформацию металла, связанную с неравномерностью истечения отдельных элементов профиля и наличием радиальной составляющей у скорости течения отдельных частиц металла.
2. Форма и длина калибрующих поясков канала матрицы, позволяющие менять сопротивление истечению отдельных элементов профиля.
3. Радиусы скругления выходных и входных кромок канала матрицы, оптимальная величина которых с точки зрения качества поверхности изделий и скоростей истечения неодинакова для различных групп сплавов.
5. Распорные углы для компенсации усилий, сжимающих канал матриц при прессовании.
6. Углы наклона образующей рабочей поверхности матрицы и переход от поверхности контейнера к поверхности матрицы, играющие большую роль при прессовании со смазкой.
7. Переходные каналы, так называемые «карманы», у матриц при прессовании профилей периодического сечения, их форма, размеры, радиусы скругления.
8. Привязка профиля в плоскости матрицы относительно оси прессования, влияющая на перераспределение объема металла заготовки по участкам, из которых образуются отдельные элементы профиля, а следовательно, и на характер течения металла.
9. Расстояние между каналами многоканальных матриц и их расположение относительно оси прессования, оказывающие влияние на стабильность геометрических размеров и степень неравномерности скорости истечения.
10. Толщина матрицы, оказывающая большое влияние на деформацию изгиба ее отдельных элементов, что существенно изменяет размеры прессуемых изделий и снижает стойкость при производстве профилей с полузамкнутыми полостями (особенно у матриц консольного типа).
11. Конструкция гребня, форма, размеры и расположение каналов для пропуска металла и объем «камеры» сварки у матриц с вмонтированной иглой для получения полых профилей. Эти элементы влияют на стойкость матриц, потребное давление прессования, качество сварного шва, геометрические размеры и поверхность изделий.
12. Конусность игл, глубина ступеней конуса и радиусы переходов у ступенчатых игл, применяемых для производства труб постоянного и переменного сечения, определяющие перепад размеров трубы по длине, протяженность перехода размеров у труб переменного сечения и форму этого перехода.
13. Размеры и форма прессшайб, которые определяют толщину «рубашки» при прессовании без смазки, величину затечки, форму прессостатка, характер распрессовки при прессовании со смазкой.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
s в | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | - температура, при которой получены свойства, Град | |
s T | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м 3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σ t Т | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Расшифровка маркировки бронзовых сплавов
Маркируют бронзу буквами Бр (бронза), добавляя буквы, указывающие на дополнительные легирующие компоненты в порядке уменьшения, и цифры, указывающие их процентное содержание, которые были добавлены при производстве.
Обратите внимание, что маркировка литейной бронзы и маркировка бронзы, обрабатываемой давлением различается расположением цифр процентного содержания примесей. Литейная бронза — цифры ставят сразу после легирующего элемента. Бронза, обрабатываемая давлением — цифры идут после буквенных обозначений в том же порядке, только через тире.
Например, БрАЖ9-4 расшифровывается: бронза, обрабатываемая давлением, с содержанием А — алюминий 9%, Ж — железо 4%, остальное М — медь. Или БрО5Ц5С5 — литейная бронза с содержанием О — олово 5%, Ц — цинк 5% и С — свинец 5%, остальное М — медь.
Процент содержания меди вычисляется простым вычислением остатка от суммы % остальных элементов. Т.е. чем меньше процент легирующих элементов, тем больше процент меди и бронза имеет красноватый оттенок. А при содержании меди не более 30% - она будет серебристого цвета.
Основные легирующие элементы, которые применяют при изготовлении бронзовых сплавов, это:
О — олово
А — алюминий
Ж — железо
Ц — цинк
С — свинец
Мц — марганец
Бр — бериллий
Н — никель
Х — хром
К — кремний
Су — сурьма
Ф — фосфор
Дополнительная маркировка бронз в зависимости от способа производства
Бронзовые сплавы в технологических таблицах содержат также буквенное обозначение способа производства и обработки бронз:
Н — нагартованный, упрочненный со степенью обжатия 50%;
Н* — нагартованный, упрочненный со степенью обжатия 40%;
О — отожженный при температуре 600°С после соответствующей степени обжатия;
З — закаленный;
З + С — закаленный и состаренный;
З + Н + С — закаленный, нагартованный и состаренный;
П — литье в песчаные формы;
К — литье в кокиль.
Купить брозу в Тольятти Вы можете на металлобазе МИР МЕТАЛЛА. Всегда в наличии бронзовые трубы, круги и плиты различных марок.
Марки первичного алюминия
Примером этой группы можно назвать первичный алюминий марки «А5». Для его получения используется обогащенный глинозем. Встретить металл в чистом виде в природе невозможно, поскольку он обладает высокой химической активностью.
При взаимодействии с другими элементами металл образует бокситы, нефелины и алуниты. Впоследствии эти руды используются для получения глинозема, а затем путем определенных химико-физических реакций – чистого алюминия.
Рекомендуем статьи по металлообработке
Требования, которым должны соответствовать марки первичного алюминия, установлены в ГОСТе 11069. Отметки об отнесении металла к определенному классу представляют собой вертикальные и горизонтальные полосы, наносимые на заготовки несмываемой краской определенных цветов. Первичный алюминий используется в ведущих промышленных областях, по большей части в тех, где необходимы повышенные технические характеристики сырья.
Марки бронзовых сплавов и их расшифровка
Бронзу (бронзовые сплавы) получают путем соединения меди и других легирующих элементов в печах при высоких температурах 1150-1170 градусов Цельсия.
Существует несколько различных сплавов бронзы по ГОСТ, в зависимости от состава легирующих элементов (оловянные и безоловянные) и методов обработки (давлением или литейные).
Соответствие ГОСТ, принятое в Российской Федерации:
- Литейные оловянные бронзовые сплавы соответствуют ГОСТ 613-79;
- Литейные безоловянные бронзовые сплавы соответствуют ГОСТ 493-79;
- Оловянные бронзовые сплавы, обрабатываемые давлением, соответствуют ГОСТ 5017-74;
- Безоловянные бронзовые сплавы, обрабатываемые давлением, соответствуют ГОСТ 18175-78.
Марки литейного алюминия
Фасонные изделия производятся из марок алюминия для литья, характерными свойствами которых является высокая удельная прочность, сочетающаяся с низкой плотностью. Благодаря этим особенностям возможно изготовление (отлив) деталей различной конфигурации без появления трещин.
Существует деление литейных марок металла на группы в соответствии с предназначением. Они бывают:
- высокогерметичными («АЛ2», «АЛ9», «АЛ4М»);
- высокопрочными и жароустойчивыми («АЛ19», «АЛ5», «АЛ33»);
- коррозионно-устойчивыми.
Для повышения свойств деталей из этих видов алюминия используют различные способы термической обработки.
Маркировка алюминия
В стандарте ГОСТ 4784-97 представлена классификация в виде 9 таблиц, в которых одновременно используется буквенная и числовая система. Можно заметить, что марки АД присутствуют в нескольких таблицах, так как это материалы с разными системами, в то же время ряд сплавов обозначается с помощью химического состава. Как расшифровать эту классификацию?
Марка | Группа сплавов, основная система легирования |
1000-1018 | Технический алюминий |
1019, 1029 и т. д. | Порошковые сплавы |
1020-1025 | Пеноалюминий |
1100-1190 | Al-Cu-Mg, Al-Cu-Mg-Fe-Ni |
1200-1290 | Al-Cu-Mn, Al-Cu-Li-Mn-Cd |
1300-1390 | Al-Mg-Si, Al-Mg-Si-Cu |
1319, 1329 и т. д. | Al-Si, порошковые сплавы САС |
1400-1419 | Al-Mn, Al-Be-Mg |
1420-1490 | Al-Li |
1500-1590 | Al-Mg |
1900-1990 | Al-Zn-Mg, Al-Zn-Mg-Cu |
Литейные сплавы представлены в ГОСТ 1583-93, некоторые составы имеют два варианта обозначения. Маркировка АЛ устарела, но все еще встречается в технической документации. Всего создано около 600 алюминиевых сплавов, примерно 400 относится к деформируемым, около 200 — к литейным. Все сплавы сгруппированы по характеристикам или основным легирующим элементам.
Какие различают марки алюминия
Придание металлу определенных свойств, усиление его характеристик возможно за счет легирования его различными химическими элементами, такими как магний, медь, цинк, кремний, марганец.
Существуют разные марки алюминия, отвечающие определенным стандартам, к примеру, «АД0» по ГОСТу 4784-97. Во избежание путаницы классификация включает высокочастотные металлы.
Алюминий может быть следующих марок:
- Первичный («А5», «А95», «А7Е»).
- Технический («АД1», «АД000», «АДС»).
- Деформируемый («АМг2», «Д1»).
- Литейный («ВАЛ10М», «АК12пч»).
- Для раскисления стали («АВ86», «АВ97Ф»).
Помимо перечисленных марок алюминия, отдельно выделяют его соединения, с помощью которых создают сплавы с золотом, серебром, платиной, прочими драгоценными металлами. Такие соединения называют лигатурами.
Марки алюминия
В современном мире алюминию отведено важное место. Металл, открытый всего 1,5 века назад используется в промышленных, военных и потребительских целях. Сплавы на основе алюминия применяют для изготовления легких конструкций, в качестве проводников тока, пищевой упаковки, отделочного материала. Химический элемент обладает хорошими восстановительными качествами и используется в металлургии для раскисления стали. Легирование алюминием снижает склонность к полиморфному распаду у титановых сплавов. Рассмотрим как получают алюминий и как расшифровываются обозначения марок.
Из-за высокого сродства с кислородом восстановление углеродом, как при выплавке стали невозможно. Современная технология была разработана в 1886 году, она состоит из нескольких этапов:
- Производство боксита (руды): глинозем дробят, сушат, обрабатывают паром для удаления примесей;
- Растворение оксида Al₂О₃ в расплаве криолита Na₃AIF₆ при 950 С⁰;
- Электролиз расплава при котором разрывается связь с кислородом.
Для очистки от примесей применяют различные способы:
- Продувание хлором: снижает содержание неметаллических включений, железа, кремния, щелочноземельных металлов (Ca, Ba, Mg, Ra, Sr);
- Электролитическое рафинирование: получение алюминия высокой чистоты (марки А995-А95);
- Прецизионные способы: сложные технологии для выплавки металла особой чистоты 99,99%;
- Фракционная кристаллизация: погружение в расплав теплообменника, выполняющего функцию кристаллизатора или охлаждение жидкого металла с помощью инертных газов;
- Химические методы, основанные на образовании интерметаллидов, например боридов.
Для придания дополнительных свойств сплав легируют титаном, цинком, марганцем, хромом, никелем и другими элементами. В зависимости от содержания чистого металла, примесей и легирующих элементов, состав маркируется согласно ГОСТ 4784-97.
Классификация марок алюминия
Первичный алюминий производят по ГОСТ 11069-2001 или ГОСТ Р 55375-2012. Показатель чистоты определяет физические и химические свойства, при которых применение металла оправдано в отдельных отраслях промышленности.
Обозначения марок отражают только сотые доли процентов содержания чистого металла, так как оно всегда выше 99%. Технический алюминий используют в разных целях, в том числе для изготовления упаковки и посуды. Для описания качеств применяют следующие термины:
- Первичный: по степени очистки Ч, ОЧ, ПЧ (чистый, особой чистоты и повышенной);
- Технический: все сырье с содержанием примесей от 0,15 до 1%;
- Деформируемый (АД): предназначенный для изготовления полуфабрикатов по технологии проката;
- Литейный: для производства изделий методом отливок;
- Для раскисления стали: расходные материалы низкой степени очистки.
Таблица основных марок алюминия и сплавов
Алюминий первичный | |||||
А0 | А5 | А5Е | А6 | А7 | |
А7Е | А8 | А85 | А95 | А97 | |
А99 | А995 | А999 | |||
Алюминий технический | |||||
АД | АД0 | АД00 | АД000 | АД00Е | |
АД0Е | АД1 | АДоч | АДС | АДч | |
Алюминий для раскисления | |||||
АВ86 | АВ86Ф | АВ88 | АВ88Ф | АВ91 | |
АВ91Ф | АВ92 | АВ92Ф | АВ97 | АВ97Ф | |
Алюминий литейный | |||||
АК21М2.5Н2.5 | АК4М4 | АК5М2 | АК5М7 | АК7 | |
АК7М2 | АК9 | АЛ1 | АЛ11 | АЛ13 | |
АЛ19 | АЛ2 | АЛ21 | АЛ22 | АЛ23 | |
АЛ23-1 | АЛ24 | АЛ25 | АЛ26 | АЛ27 | |
АЛ27-1 | АЛ28 | АЛ29 | АЛ3 | АЛ30 | |
АЛ32 | АЛ33 | АЛ34 | АЛ4 | АЛ4-1 | |
АЛ4М | АЛ5 | АЛ5-1 | АЛ6 | АЛ7 | |
АЛ7-4 | АЛ8 | АЛ9 | АЛ9-1 | В124 | |
В2616 | ВАЛ10 | ВАЛ10М | ВАЛ11 | ВАЛ12 | |
ВАЛ8 | |||||
Алюминиевый деформируемый сплав | |||||
1201 | 1420 | АВ | АД31 | АД33 | |
АД35 | АК4 | АК4-1 | АК6 | АК8 | |
АМг1 | АМг2 | АМг3 | АМг3С | АМг4 | |
АМг4.5 | АМг5 | АМг5П | АМг6 | АМц | |
АМцС | АЦпл | В65 | В93 | В94 | |
В95 | В95П | В96 | В96ц | В96Ц1 | |
ВД17 | Д1 | Д12 | Д16 | Д16П | |
Д18 | Д19 | Д1П | Д20 | Д21 | |
ММ | |||||
Алюминиевый антифрикционный сплав | |||||
АМСТ | АН-2.52 | АО20-1 | АО3-12 | АО3-7 | |
АО6-1 | АО9-1 | АО9-2 | АО9-2Б | АСМ |
Таблица основных марок алюминия и его сплавов
Ниже приведены марки стали алюминия в соответствии с классами, к которым они относятся:
Алюминий для раскисления
Алюминиевый деформируемый сплав
Алюминиевый антифрикционный сплав
Согласно ГОСТу 4784-97 алюминий маркируется буквами и цифрами. Расшифровка марок алюминия приведена ниже, в ней используются следующие обозначения:
- «А» – технический алюминий;
- «Д» – дюралюминий;
- «АК» – алюминиевый сплав, ковкий;
- «АВ» – авиаль;
- «В» – высокопрочный алюминиевый сплав;
- «АЛ» – литейный алюминиевый сплав;
- «АМг» – алюминиево-магниевый сплав;
- «АМц» – алюминиево-марганцевый сплав;
- «САП» – спеченные алюминиевые порошки;
- «САС» – спеченные алюминиевые сплавы.
Следом за этими буквами указывается номер марки алюминия и буква, обозначающая состояние сплава:
- «М» – мягкий (после отжига);
- «Т» – естественно состаренный и закаленный;
- «А» – плакированный (покрытый слоем чистого алюминия);
- «Н» – нагартованный;
- «П» – полунагартованный.
Марки листов алюминия
Производство листового проката регламентирует ГОСТ 21631-76. Листы производят из марок А0, А5, А6, А7, АД0, АД1 и сплавов с магнием, марганцем, цинком. Для решения ряда технологических задач у алюминия достаточно пластичности, но порой не хватает механических характеристик. Для улучшения качеств применяют методы:
- Плакирование: напыление металлического слоя, по толщине оно может быть технологическим (Б), нормальным (А), утолщенным (У);
- Нагартовка: упорядоченное нанесение микродефектов, которые формируют уплотнения. По степени обработки листы бывают нагартованными (Н) и полунагартованными (Н2);
- Термически обработанные: применяют упрочняющий отжиг и закаливание.
Закаленные полуфабрикаты подвергают старению. После нагрева в печи изделия находятся в неподвижном состоянии, в это время происходят изменения кристаллической решетки, связанные с выпадением избыточной фазы. Пресыщенные легирующими элементами кристаллы выделяют отдельные атомы, которые концентрируются на границах зерен. Частицы, образованные таким образом упрочняют сплав. Старение может быть естественным (при комнатной температуре) или искусственным (при специально поддерживаемой температуре до 100-150 С⁰).
Произведенная обработка обозначается следующим образом:
Отделка поверхности может быть обычной, повышенной (П) и высокой (В). Эти буквы ставят в конце маркировки; “П” указанная в геометрических параметрах 1000Пх2000. означает повышенную точность.
Алюминиевый листовой прокат применяют в строительстве, автомобилестроении, для изготовления штампованных деталей и производства фольги.
Марки алюминия
Современную промышленность трудно представить без алюминия и его сплавов. И потому так важно знать, какие марки этого металла используются для тех или иных целей. К примеру, виды, применяемые для строительства фюзеляжа космического корабля, не подойдут для производства пищевой посуды и т. д.
Маркировка алюминия используется для обозначения процентного содержания различных примесей, а также технологии получения или обогащения. Давайте же разберемся, какими физико-химическими свойствами обладают те или иные марки этого металла и где они применяются.
Марки алюминия и его сплавов
Существует деление алюминиевых сплавов на:
- деформируемые (используются для поковки и проката);
- литейные (для отлива деталей).
Требования к их химическому составу определены в ГОСТах 1131 и 4784-97.
В зависимости от типа упрочнения сплавы могут быть:
- термоупрочняемыми;
- упрочняемыми давлением.
Более распространенной является другая классификация, в основе которой лежат характеристики сплавов. Согласно ей термоупрочненные сплавы делятся на:
- жаропрочные («АК4», «АК4-1», «Д20», «1201»);
- высокопрочные («В93» и «В95»);
- высокопластичные средней прочности, или авиали, легируемые алюминием, магнием и кремнием («АД33», «АД31» и «АД35»);
- свариваемые с обычной прочностью («1925» и «1915»);
- дюрали с нормальной прочностью, легируемые алюминием, медью и магнием («Д16», «Д1» и «Д18»);
- ковочные («АК8» и «АК6»).
Термически неупрочняемые стали с повышенной коррозионной устойчивостью и свариваемостью делятся на:
- высокопластичные средней прочности, называемые магналиями («АМг1», «АМг6», «АМг2» и др.);
- высокопластичные низкой прочности, легируемые магнием («Д12» и «АМц»), и нелегируемые, или технический алюминий («АД1» и «АД0»).
При изготовлении листов должны соблюдаться требования ГОСТа 21631–76. Классифицируется продукция в зависимости от области применения и свойств:
- Из кислотостойких марок листового алюминия производят баки для топлива, сварные емкости, элементы самолетов, заклепки, рамы и автомобильные радиаторы. Для металла характерна хорошая свариваемость и коррозионная устойчивость, повышенная пластичность и деформируемость. Для изготовления плоских кислотостойких листов используются сплавы алюминия марок «АМг» (2, 3, 5 и 6), легируемые марганцем и магнием.
- Технический алюминий используется для отделочных и изоляционных работ. Его преимущества заключаются в финансовой экономии, обусловленной повышенной гибкостью и небольшой массой листов.
- В строительстве широко применяется гладкий перфорированный алюминий, он используется для изготовления решеток воздуховодов, декоративных интерьерных деталей, усиления гипсокартонных углов. Отверстия в перфорированных деталях могут быть прямоугольными, круглыми, ромбовидными. Делаются они на специальных прессах координатно-пробивного типа.
- Марки пищевого алюминия производятся из отожженных, полунагартованных и нагартованных (холоднодеформированных для упрочнения материала) сплавов («А5М», «А5Н2», «А5Н»), а также из не подвергавшегося термической обработке первичного алюминия («А7» или «АД0»). Для листов характерна высокая гигиеничность, отсутствие примесей и легирующих элементов.
Готовый прокат может быть как листами, толщиной от 0,3–2 мм, так и плитами, толщиной до 10,5 мм. Ширина проката составляет 0,5-2 м, длина – 2–7,2 м.
Отдельно отметим гофрированные алюминиевые листы (профилированные), используемые для кровельных работ. Их отличительными чертами являются долговечность и высокие эксплуатационные характеристики.
Профилированные изделия изготавливаются из марок алюминия, подходящих для гибки, и обладают следующими достоинствами:
Кроме того, выпускаются также алюминиевые анодированные листы с матовой, зеркальной или полуматовой поверхностью. Бытовые приборы, оконные жалюзи, осветительные приборы, декоративные элементы, солнечные батареи производятся из аланода – листа алюминия, имеющего зеркальную поверхность. Сфера его использования напрямую связана со светоотражающими способностями.
Марки алюминия для раскисления
Физические свойства материала изготовления влияют на итоговые характеристики товара. Алюминий низкого качества не подходит для производства продукции, однако одним из вариантов его использования является раскисление стали. В процессе раскисления из расплавленного железа удаляется растворенный в нем кислород. За счет этого улучшаются механические свойства металла. Процесс выполняется с алюминием марок «АВ86» и «АВ97Ф».
Марки деформируемого алюминия
Различные марки алюминия обрабатываются в горячем и холодном виде путем прокатки, прессования, волочения и т. п. Пластические деформации позволяют получать заготовки с разным продольным профилем: алюминиевые прутки, листы, ленты, плиты, профили и пр.
Требования, предъявляемые к деформируемым маркам алюминия, закреплены в ГОСТе 4784, OCT1 92014-90, OCT1 90048 и OCT1 90026. Отличительная черта металла заключается в твердой структуре раствора, в котором содержится большой процент эвтектики – жидкой фазы, находящейся в равновесии с двумя и более твердыми состояниями вещества.
Марки деформируемого металла широко применяются в таких отраслях, как самолето- и кораблестроение, строительство (для сварочных работ), т. е. в сферах, в которых требуются повышенные технические характеристики материалов.
Марки технического алюминия
В марках технического (нелегированного) алюминия содержание посторонних примесей составляет не более 1 %.
По ГОСТу 4784-97 марки технического алюминия должны обладать повышенной антикоррозионной стойкостью. При этом их прочность не очень высока. Отсутствие в составе металла легирующих элементов приводит к образованию на его поверхности устойчивой защитной оксидной пленки.
Отличительными чертами марок технического алюминия являются высокая тепло- и электропроводность. Молекулярная решетка отличается почти полным отсутствием примесей, рассеивающих поток электронов. Подобные свойства позволяют применять металл в таких сферах, как приборостроение, изготовление оборудования для нагревания и теплообмена, освещения.
Марки листов алюминия
Для производства этих заготовок используется алюминий или его сплавы, деформируемые в горячем виде, а затем прокатываемые в холодном.
Листы изготавливаются из:
- технического алюминия марок «А0», «АД0», «А5», «А6»;
- дюралевых сплавов марок «Д1», «Д12», «Д16»;
- деформируемых сплавов «АД31»;
- алюминиево-марганцовых сплавов «АМц»;
- алюминиево-магниевых – «АМг».
Чтобы повысить коррозионную устойчивость, листы плакируют, то есть покрывают пленкой из чистого алюминия, которая может иметь толщину, достигающую 5 % от общей толщины листа.
Поверхность стандартных алюминиевых листов (общего и специального назначения) обычно гладкая, имеющая повышенную, высокую или обычную отделку. Из листов производят нержавеющие изделия, используемые в таких отраслях промышленности, как топливная, пищевая, химическая, строительство и машиностроение.
Для производства листов используется алюминий и его сплавы марок «А5», «1105», «АД», «АМг1», «АМг3», «А6М», «АМг2», «АМг5», «АМц», «АМг6», «АД1», «ВД1», «Д16» и пр.
Поверхность листа марки «А5» – матовая, толщина варьируется от 0,5 до 10 мм, отделка обычного качества. По своему химическому составу он соответствует требованиям ГОСТа 11069-74. Реализуется как в листах, так и в рулонах.
Характеризуется высокой теплопроводностью, коррозионной стойкостью. Благодаря высоким пластическим свойствам металлопрокат марки «А5» легко формуется разными способами и обрабатывается. Эта марка алюминия подходит для сварки аргоном.
В зависимости от состояния металла листы могут быть:
- нагартованными (А5Н);
- мягкими или отожженными («А5М»).
«А5Н» относится к прочным маркам алюминия. Такое свойство обусловлено его холодной обработкой давлением. В то же время ударная вязкость и пластичность материала снижена.
Из листов марки «А5» изготавливают промышленные конструкции и оборудование, в том числе емкости для пищевых продуктов, декоративные элементы, покрытия для обшивки.
При изготовлении отожженных листов из марок мягкого алюминия «А6М» соблюдаются требования ГОСТа 21631-76. Материал используется в пищевой промышленности. Алюминий «А6» по составу соответствует требованиям ГОСТа 11069-74.
Для изготовления проката «1105» используется дюралюминий, легированный магнием и медью. Для обозначения дюрали используются две первые цифры (11), для порядкового номера сплава – последние.
Листы алюминия марки «1105» используются для изготовления сварных конструкций и деталей, эксплуатируемых в условиях низких температур:
- Алюминиевый лист «1105Н» представляет собой нагартованный прокат, для придания большей прочности пластически деформированный. Изменение свойств и структуры обусловлены давлением, воздействующим на его поверхность. При снижении ударной вязкости и пластичности увеличиваются такие свойства, как прочность и твердость.
- Алюминиевый лист «1105М» представляет собой отожженный при высоких температурах металлопрокат, отличающийся пластичностью, ковкостью и мягкостью.
- Алюминиевые листы, имеющие утолщение и плакировочный слой, обозначаются «1105УМ», без плакировочного слоя – «1105АМ». Отличительной чертой является высокая устойчивость к воздействию агрессивной эксплуатационной среды.
- Закаленные, естественно состаренные алюминиевые листы, применяемые в различных промышленных областях, маркируются «1105Т». Сортамент с нормальной плакировкой обозначают «1105АТ».
- Листовой алюминий марки «АД».
Высокая пластичность и коррозионная устойчивость – отличительные черты листов «АД», изготавливаемых из технического алюминия с малым количеством примесей. Листы могут быть мягкими («АДМ») и нагартованными («АДН»). Используются в качестве заготовок в различных промышленных сферах.
Материал можно приобрести как в листах, так и в рулонах. Для производства листового используется алюминий марки «АД1», соответствующий требованиям ГОСТа 21631-76 и ГОСТа 4784-74. Отличительные черты – простота формовки и механической обработки, коррозионная устойчивость. Чистота сплава в процентном отношении обозначена цифрами, деформируемый металл – буквами.
Это деформируемый сплав, для легирования которого используется магний. Цифрой обозначается содержание главного легирующего элемента (1 % магния). Отличительные черты материала – хорошая свариваемость, пластичность, коррозионная стойкость. Марки алюминия находят применение в производстве строительных конструкций и деталей в промышленной сфере.
Имеет характеристики аналогичные «АМг1», однако с двухпроцентным содержанием магния. Легко режется. Высокая электропроводность обусловлена небольшим включением примесей.
Содержит 3 % легирующего вещества – магния. Выпускается в форме рулонов и листов. Основные характеристики: отличная пластичность, коррозионная устойчивость, свариваемость. Из марок алюминия «АМг3» изготавливают средние по прочности конструкции, сварные баки, промышленные трубопроводы, гидравлическое оборудование, каркасы и обшивку железнодорожных вагонов.
Листы с 5%-ным с содержанием магния. Из марок авиационного алюминия изготавливают химические емкости, используемые под давлением, трубопроводы, сварные внешние конструкции, обшивку речных и морских судов, самолетов и грузовых автомобилей.
Деформируемый сплав, используемый так же, как и «АМг5», но с содержанием 6 % магния.
Алюминиевые листы, в которых содержится 1–1,6 % марганца. Материал характеризуется легким свариванием, пластичностью, коррозионной устойчивостью. Его используют в производстве судовой обшивки, строительных конструкций, радиаторов, емкостей для напитков, декоративных элементов, химических емкостей, эксплуатируемых под высоким давлением.
Для производства «ВД1» используется дюралюминиевый деформируемый сплав высокой прочности, легированный магнием и медью. Отличается пластичностью, простотой обработки, коррозионной устойчивостью. Чтобы усилить стойкость к коррозии, применяют дополнительное плакирование, т. е. наносят слой чистого алюминия.
Различные марки алюминия широко применяются во всех сферах промышленности. Металл входит в пятерку наиболее распространенных в мире. В естественных условиях он является составной частью различных руд. Добавляя другие компоненты, создают различные марки алюминия, обладающие улучшенными характеристиками, например, более высокой коррозионной устойчивостью, прочностью, жаростойкостью.
Читайте также: