Из предложенных марок сплавов выберите марку свинцовистой бронзы 1 бра7
Характеристика бронзы БрА7: безоловянные бронзы по своим свойствам не уступают, а часто превосходят оловянные бронзы; поэтому их широко применяют в машиностроении.
Безоловянные бронзы, обрабатываемые давление м, выпускаются в соответствии о ГОСТ 18175-78.
Алюминиевые бронзы (двух- и многокомпонентные) имеют большое распространение в машиностроении. Алюминий растворяется в меди, образуя а-твердый раствор замещения с пределом растворимости 9,4%. Двойные алюминиевые однофазные бронзы (БрА5; БрА7; БрА10) отличаются высокой прочностью и пластичностью. Они хорошо обрабатываются давлением в горячем и холодном состоянии. Предназначены для упругих элементов - пружин, мембран, сильфонов, деталей, работающих в морской среде. Алюминиевые бронзы морозостойки, не магнитны, не дают искры при ударах. По коррозионной стойкости они превосходят Латуни и оловянные бронзы. Вместе с тем эти сплавы трудно поддаются пайке и неустойчивы в условиях перегретого пара. Понижая электро- и теплопроводность меди, алюминий повышает ее жаростойкость.
закалка с трехкратным отпуском.
Рис.
1) перлитному классу;
2) аустенитному классу;
3) мартенситному классу;
3) ферритному классу.
4. Укажите, к какому классу легированных сталей по структуре в нормализованном состоянии относится сталь, имеющая диаграмму изотермического распада аустенита (рис.):
1) перлитному классу;
2) аустенитному классу;
3) мартенситному классу;
3) ферритному классу.
5. Укажите, к какому классу легированных сталей по структуре в нормализованном состоянии относится сталь, имеющая диаграмму изотермического распада аустенита (рис.):
1) перлитному классу;
2) аустенитному классу;
3) мартенситному классу;
3) ферритному классу.
6. Какая из перечисленных сталей относится к подшипниковым:
7. Какая из перечисленных сталей относится к износостойким:
8. Какая из сталей относится к коррозионно-стойким:
9. Металлические материалы, способные сопротивляться разрушению в агрессивных средах, называются:
Износостойкими.
10. Металлические материалы, способные сопротивляться ползучести и разрушению при высоких температурах при длительном действии нагрузки, называются:
2) жаропрочными;
11. Металлические материалы, обладающие повышенным сопротивлением химическому взаимодействию с газами при высоких температурах, называются:
1) жаростойкими;
12. Напряжение, которое вызывается за установленное время испытания при заданной температуре, заданное удлинение образца или заданную скорость деформации, называется:
1) пределом ползучести;
2) пределом прочности;
3) пределом текучести;
4) пределом длительной прочности.
13. Какая из перечисленных ниже структур имеет более высокие жаропрочные свойства:
Аустенитная.
14. Расположите следующие группы режущих инструментальных материалов в порядке возрастания их теплостойкости: 1 – твердые сплавы, 2 – быстрорежущие стали, 3 – углеродистые инструментальные стали, 4 – природный алмаз:
4) 3, 4, 2, 1.
15. Расположите следующие группы режущих инструментальных материалов в порядке возрастания их твердости: 1 – твердые сплавы, 2 – быстрорежущие стали, 3 – углеродистые инструментальные стали, 4 – природный алмаз:
16. Цель легирования:
1) создание сталей с особыми свойствами (жаропрочность, коррозионная стойкость и т. д.);*
2) получение гладкой поверхности;
3) повышение пластических свойств;
4) уменьшения поверхностных дефектов.
17. Какой легирующий элемент обозначается буквой С при маркировке сталей?
18. Буква А при маркировке стали 38ХМЮА обозначает:
2) высококачественную сталь;
3) автоматную сталь;
4) сталь ферритного класса.
19. Буква А при маркировке стали 12ГН2МФАЮ обозначает:
2) высококачественную сталь;
3) автоматную сталь;
4) сталь ферритного класса.
20. Буква А при маркировке стали АС40ХГН обозначает:
2) высококачественную сталь;
3) автоматную сталь;
4) сталь ферритного класса.
21. Укажите состав стали 35Х2АФ:
4) 0,35% Cr, 2% N и 1% V;
22. В сталях, используемых для изготовления строительных конструкций, содержание углерода должно быть:
2) от 0,35 до 0,45%;
3) не более 0,25%;
23. Укажите состав стали 60СГ:
1) 6% углерода; 1% кремния, 1% марганца;
2) 6% углерода; 1% свинца, 1% марганца;
3) 0,6% углерода; 1% кремния, 1% марганца;
4) 0,6% углерода; 1% свинца, 1% графита.
24. Укажите состав стали 50ХФ:
1) 0,5% углерода; 1% хрома, 1% ванадия;
2) 0,5% углерода; 1% хрома, 1% вольфрама;
3) 5% углерода; 1% хрома, 1% ванадия;
4) 50% углерода; 1% хрома, 1% ванадия.
25. Укажите количество никеля в стали марки 20Х2Н4:
26. Укажите количество молибдена в стали марки 15Х11М2Ф:
27. Укажите состав стали 110Г13Л:
1) 1,1% углерода, 13% марганца;
2) 11% углерода, 13% марганца;
3) 1,1% углерода, 1,3% марганца;
4) 1,1% углерода, 13% марганца, 1% лития.
28. Выберите марку стали, подвергаемую цементации:
Х2Н4А.
29. Цеметуемые стали для упрочнения подвергают:
1) закалке с низким отпуском;
2) закалке со средним отпуском;
3) закалке с высоким отпуском;
4) закалке с трехкратным отпуском.
30. Выберите термическую отработку для рессорно-пружинных сталей:
1) закалка с низким отпуском;
2) закалка со средним отпуском;
3) закалка с высоким отпуском;
4) закалка с трехкратным отпуском.
31. Выберите термическую отработку для шарикоподшипниковых сталей:
1) закалка с низким отпуском;
2) закалка со средним отпуском;
3) закалка с высоким отпуском;
закалка с трехкратным отпуском.
32. Улучшаемые стали подвергаются:
1) закалке с низким отпуском;
2) закалке со средним отпуском;
3) закалке с высоким отпуском;
4) закалке с трехкратным отпуском.
33. Для изготовления мелкоразмерных режущих (слесарных) инструментов (метчиков, напильников, развёрток и др.) применяются:
1) У10А – У13А;
4) 03Х18Н10, 17Х18Н9.
34. Выберите оптимальный материал для режущего инструмента, работающего при температуре 100 °С:
35. Выберите оптимальный материал для режущего инструмента, работающего при температуре 200 °С:
36. Выберите оптимальный материал для режущего инструмента, работающего при температуре 500 °С:
Т15К10.
37. Выберите оптимальный материал для режущего инструмента, работающего при температуре 1000 °С:
38. Основным легирующим элементов в быстрорежущей стали Р18 является:
39 Какие карбиды составляют основу твердого сплава Т5К10?
1) Карбид вольфрама + карбид титана;
2) карбид хрома + карбид молибдена;
3) карбид марганца + карбид хрома;
4) карбид молибдена + карбид вольфрама.
40. Какие карбиды составляют основу твердого сплава ВК8?
1) Карбид вольфрама + карбид титана;
2) карбид хрома + карбид молибдена;
3) карбид вольфрама;
4) карбид молибдена + карбид вольфрама.
41. Укажите оптимальное содержание углерода в штамповых сталях для холодного деформирования:
42. Укажите оптимальное содержание углерода в штамповых сталях для горячего деформирования:
43. Латуни и бронзы – это сплавы на основе:
44. Латунь Л80. Цифра в маркировке обозначает:
2) временное сопротивление;
3) содержание меди;
4) содержание цинка.
45. Из предложенных марок сплавов выберите марку свинцовистой бронзы:
Бр С30.
46. Из предложенных марок сплавов выберите марку алюминиевой бронзы:
47. Основным легирующим элементом титана является:
48. Упрочняющей термической обработкой титановых сплавов является:
2) закалка с низким отпуском;
3) закалка со старением;
49. Титан применяется в авиастроении из-за:
1) пониженной плотности (4505 кг/м 3 );
2) высокой температуры плавления (1672 °);
3) высокой коррозионной стойкости;
Хорошей свариваемости.
50. Высокая коррозионная стойкость алюминиевых сплавов обусловлена:
1) типом кристаллической решетки;
2) наличием тонкой окисной плёнки Al2O3;
3) наличием примесей;
4) легированием хромом.
51. Какой из предложенных деформируемых алюминиевых сплавов подвергается упрочняемой термообработке?
52. Основным легирующим элементом силуминов является:
53. Выберите из нижеперечисленных сплав алюминия с марганцем:
54. Выберите из нижеперечисленных сплав алюминия с магнием:
55. Выберите из нижеперечисленных сплав алюминия с кремнием:
АЛ2.
56. Выберите из нижеперечисленных сплав алюминия с медью:
57. Упрочняющей термической обработкой алюминиевых сплавов является:
2) закалка с низким отпуском;
3) закалка со старением;
58. Коррозия вызывается:
2) стремлением к уменьшению свободной энергии в различных средах в данных условиях;
Бронза БрА7
Характеристика бронзы БрА7: безоловянные бронзы по своим свойствам не уступают, а часто превосходят оловянные бронзы; поэтому их широко применяют в машиностроении.
Безоловянные бронзы, обрабатываемые давление м, выпускаются в соответствии о ГОСТ 18175-78.
Алюминиевые бронзы (двух- и многокомпонентные) имеют большое распространение в машиностроении. Алюминий растворяется в меди, образуя а-твердый раствор замещения с пределом растворимости 9,4%. Двойные алюминиевые однофазные бронзы (БрА5; БрА7; БрА10) отличаются высокой прочностью и пластичностью. Они хорошо обрабатываются давлением в горячем и холодном состоянии. Предназначены для упругих элементов - пружин, мембран, сильфонов, деталей, работающих в морской среде. Алюминиевые бронзы морозостойки, не магнитны, не дают искры при ударах. По коррозионной стойкости они превосходят Латуни и оловянные бронзы. Вместе с тем эти сплавы трудно поддаются пайке и неустойчивы в условиях перегретого пара. Понижая электро- и теплопроводность меди, алюминий повышает ее жаростойкость.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
s в | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | - температура, при которой получены свойства, Град | |
s T | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м 3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σ t Т | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Бронза сплавы и марки
Бронза безоловянная литейная | ||||
БрА10Ж3Мц2 | БрА10Ж4Н4Л | БрА10Мц2Л | БрА11Ж6Н6 | БрА7Ж1.5С1.5 |
БрА7Мц15Ж3Н2Ц2 | БрА9Ж3Л | БрА9Ж4 | БрА9Ж4Н4Мц1 | БрА9Мц2Л |
БрС30 | БрС60Н2.5 | БрСу3Н3Ц3С20Ф | БрСу6Н2 | БрСу6С12Ф0.3 |
БрСу6Ф1 |
Бронза безоловянная, обрабатываемая давлением | ||||
БрА5 | БрА7 | БрАЖ9-4 | БрАЖМц10-3-1.5 | БрАЖН10-4-4 |
БрАЖНМц9-4-4-1 | БрАМц10-2 | БрАМц9-2 | БрБ2 | БрБ2.5 |
БрБНТ1.7 | БрБНТ1.9 | БрБНТ1.9Мг | БрКМц3-1 | БрКН1-3 |
БрКХКо0.4-0.6-1.6 | БрМц5 | БрСр0.1 | БрХ1 | БрХЦр0.3-0.09 |
БрХЦр0.6-0.05 |
Свойства и полезная информация:
Бронзами называют сплавы меди, в которых цинк или никель не являются основными легирующими элементами.
По химическому составу бронзы подразделяются на две группы: оловянные, в которых основным легирующим элементом является олово, и безоловянные, не содержащие олово в качестве легирующего компонента.
По технологическому признаку бронзы делятся на литейные и деформируемые. Литейные бронзы предназначены для фасонных отливок. Деформируемые бронзы хорошо поддаются обработке давлением.
Бронзы по сравнению с латунью обладают лучшими механическими, антифрикционными свойствами и коррозионной стойкостью. В качестве легирующих элементов в бронзе используют олово, алюминий, никель, марганец, железо, кремний, свинец, фосфор, бериллий, хром, цирконий, магний и другие элементы.
Литейные оловянные бронзы: Жидкотекучесть литейных оловянных бронз ниже, чем у других бронз, однако они имеют незначительную объемную усадку, что позволяет получать из этих сплавов фасонные отливки бронзы.
Оловянные шихтовые литейные бронзы в чушках (ГОСТ 614-73) служат шихтой: БрОЗЦ8С4Н1-для литейной бронзы; БрОЗЦ7С5Н; БрОЗЦ 1ЗС4 - для бронзы БрОЗЦ12С5; Бр04Ц7С5 - для бронзы БрОЗ, 5Ц7С5; Бр05Ц6С5 - для бронзы Бр05Ц5С и Бр04Ц4С17. Перечисленные литейные бронзы (ГОСТ 613-79) применяются для литья антифрикционных деталей. Кроме того, бронзы БрО3Ц12С5 и БрО3Ц7С5Н применяются для арматуры, работающей в воде и водяном паре (БрО3Ц7С5Н в морской воде и маслах) давлением до 245 МПа.
Литейные нестандартные бронзы БрО10; Бр019 ответственного назначения применяются для арматуры и фасонных отливок; бронза БрО10Ф1 - для подшипников шестерен и втулок ответственного назначения; бронза БрО10Ц2 - для арматуры, подшипников, фасонных отливок; бронза Бр08Ц4 - для частей насосов и арматуры; бронза БрО6ЦбС3 - для паровой и водяной арматуры; бронза Бр08С12 - для ответственных подшипников, работающих при высоких давлениях; бронзы Бр05С25 и Бр01С22 - для изготовления подшипников и втулок, работающих при малых нагрузках и больших скоростях, малоуплотнительных колец; бронза БрО6Ц6С3 - для паровой и водяной арматуры. Бронзы Бр05С25, Бр01С22, Бр08С12 относятся к группе свинцовистых бронз, к которым относятся сплавы БрС30 (для подшипников, сальников), БрС60Н2,5 (для подшипников, фасонных отливок). Вследствие невысоких механических свойств двойные свинцовистые бронзы применяют для втулок и подшипников в виде тонкого слоя на стальной основе. Свинцовистые бронзы с повышенным содержанием олова (Бр08С12, БрО10С10, Бр010С2НЗ) характеризуются более высокими механическими свойствами, чем двойная свинцовистая бронза. Поэтому из этой бронзы изготовляют втулки и вкладыши подшипников без стальной основы.
Оловянные бронзы, обрабатываемые давлением - деформируемые: подразделяются на следующие группы (ГОСТ 5017-74): оловянно-фосфористые бронзы БрОФ8,0-0,3; БрОФ6,5-0,4; БрОФ6,5-0,15; БрОФ7-0,2; БрОФ4-0,25; оловянно-цинковые бронзы БрОЦ4-3; оловянно-цинково-свинцовые бронзы БрОЦС4-4-2,5 и БрОЦС4-4-4.
Оловянные бронзы, обрабатываемые давлением, могут поставляться, так же как и латуни, в мягком (отожженном), полутвердом, твердом и особо твердом состоянии.
Бронзы БрОФ6,5-0,4, БрОФ6,5- 0,15 и БрОЦС4-4-2,5 обрабатываются обычно в холодном состоянии (прокатка, волочение), а в горячем состоянии - лишь прессованием. Бронза БрОЦ4-3 хорошо обрабатывается давлением в горячем и холодном состоянии.
Бериллиевые бронзы, являясь дисперсионно-твердеющими сплавами, обладают высокими механическими, упругими и физическими свойствами. Отличаются высокой коррозионной стойкостью, жаропрочностью, циклической прочностью; они устойчивы при низких температурах, не магнитны, не дают искры при ударах. Закалку бериллиевых бронз осуществляют с температуры 750-790 °С, старение - при 300-325 °С. Добавки никеля, кобальта или железа способствуют замедлению скорости фазовых пре вращений при термической обработке, что значительно облегчает технологию закалки и старения. Кроме того, никель повышает температуру рекристаллизации, а марганец может частично заменить дорогой бериллий. Бериллиевые бронзы применяются для пружин, мембран, пружинящих деталей, в часовой промышленности.
Сплавы меди с марганцем отличаются высокими механическими свойствами, обрабатываются давлением в горячем и холодном состоянии. Они обладают повышенной жаропрочностью и коррозионной стойкостью. Применяются для топочной арматуры.
Кремниевые бронзы обычно содержат никель или марганец. Эти сплавы отличаются высокими механическими, упругими и антифрикционными свойствами; при этом не теряют своей пластичности при низких температурах. Кремниевые бронзы хорошо паяются, обрабатываются давлением при низких и высоких температурах. Они не магнитны и не дают искры при ударах. Применяются для антифрикционных деталей, пружин, подшипников, в морском судостроении, для сеток, решеток, испарителей, направляющих втулок.
Литейные безоловянные бронзы (ГОСТ 493-79) характеризуются высокой прочностью и хорошими антифрикционными и коррозионными свойствами. Они применяются для изготовления деталей, работающих в особо тяжелых условиях (зубчатые колеса, втулки, клапаны, шестерни для мощных кранов и турбин, червяки, работающие в паре с деталями из упрочненных сталей, подшипники, работающие при высоких давлениях и ударных нагрузках).
Получение бронзы: Плавку бронзы проводят в печах любого типа, применяемых для плавки медных сплавов.
Шихта для плавки бронзы может быть составлена или из свежих металлов, или из свежих металлов с добавкой отходов и вторичных металлов. Плавку ведут под слоем древесного угля или под слоем флюса.
Плавку шихты из свежих металлов ведут в следующей последовательности: в хорошо разогретую печь загружают соответствующее количество древесного угля или флюса. Затем загружают медь и после ее расплавления и нагрева до температуры 1150—1170° С расплав раскисляют фосфористой медью (раскисление иногда ведут в два приема: в печи и в ковше; за каждый прием вводится по 50% фосфористой меди), после раскисления расплава в него вводят подогретые до 100—120° С соответствующие легирующие элементы.
Тугоплавкие легирующие элементы вводят в виде лигатур. После этого расплав перемешивают до полного растворения легирующего элемента и нагревают до заданной температуры. При выдаче сплава из печи в ковше перед разливкой расплав окончательно раскисляют остатком фосфористой меди для освобождения ее от окислов. Фосфористая бронза улучшает жидкотекучесть расплава.
В случае приготовления бронзы с использованием оборотных материалов (отходов своего производства и вторичных металлов) плавку ведут в следующей последовательности: вначале расплавляют медь, раскисляют ее фосфористой медью и добавляют к ней оборотные металлы. После полного расплавления оборотных металлов в расплав вводят легирующие компоненты в соответствующей последовательности. Если в шихту чистая медь входит в небольшом количестве, то в этом случае вначале расплавляют оборотные металлы, а потом медь и легирующие добавки.
Медь может загружаться также и с первыми порциями шихты. Плавку ведут под слоем древесного угля или под слоем флюса.
После расплавления всей шихты и нагрева расплава до требуемой температуры его окончательно раскисляют фосфористой медью и покрывают сверху хорошо прокаленным древесным углем или хорошо просушенным соответствующим флюсом. Расход флюса составляет 2—3% от массы шихты. Расплав, нагретый до заданной температуры, выдерживают под слоем флюса 20— 30 мин, периодически перемешивая, затем с поверхности расплава удаляют образовавшийся шлак и разливают по формам.
Для лучшего удаления шлака с поверхности расплава в ковш добавляют кварцевый песок, который сгущает шлак.
Готовность бронзы для разливки по формам определяют по технологическим пробам. Излом технологической пробы должен быть чистым и однородным.
В случае приготовления алюминиевой бронзы с использованием в шихте оборотных сплавов операцию раскисления расплава фосфористой бронзой не применяют, так как фосфор обладает меньшим сродством к кислороду, чем алюминий, кроме того, следует иметь в виду, что эта бронза весьма чувствительна к перегреву (свыше 1200° С).
В перегретом состоянии алюминиевая бронза окисляется и насыщается газами. Образующаяся при плавке алюминиевых бронз окись алюминия не восстанавливается раскислителями и весьма трудно удаляется из расплава. Окисные пленки алюминия, имея очень высокую температуру плавления, снижают жидкотекучесть бронзы и вызывают брак. Плавку следует вести интенсивно на верхнем пределе температур нагрева и не задерживать готовый сплав в печи. В качестве покрывного флюса при плавке алюминиевых бронз рекомендуется применять флюс, состоящий из 50% кальцинированной соды и 50% криолита. Перед разливкой алюминиевую бронзу рафинируют введением в расплав хлористого марганца или хлористого цинка в количестве 0,2—0,4% от массы шихты. После рафинирования расплав в ковше выдерживают 3—5 мин до прекращения газовыделения. Сплав при заданой температуре разливают по формам.
Для предупреждения ликвации в бронзу с высоким содержанием свинца (50—60%) рекомендуется вводить 2—2,3% Ni в виде медноникелевой лигатуры или в качестве флюсов следует применять сернокислые соли щелочных металлов. Никель, марганец и серебро, если они входят в состав бронзы, вводят в расплав до присадки олова.
Для улучшения качества бронзы ее иногда модифицируют малыми добавками тугоплавких металлов.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
s в | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | - температура, при которой получены свойства, Град | |
s T | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м 3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σ t Т | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Тесты для контроля текущих знаний по разделу III: «Конструкционные и инструментальные материалы»
10. Удовлетворительной пластической прочностью после термической обработки на твердость 45–50 HRС; высокими значениями предела текучести и твердости при повышенных температурах; длительной эксплуатацией инструментов при температурах 600–700°С, устойчивым сопротивлением отпуску должны обладать:
1) быстрорежущие стали;
2) штамповые стали для горячего деформирования;
3) штамповые стали для холодного деформирования;
4) твердые сплавы.
11. Теплостойкостью не ниже 400–450°С, способностью противостоять воздействию удельных давлений до 2000–2200 МПа в течение длительного времени и высокой износостойкостью должны обладать:
1) быстрорежущие стали;
2) штамповые стали для горячего деформирования;
3) штамповые стали для холодного деформирования;
4) твердые сплавы.
14. Содержание углерода в штамповых сталях для холодного деформирования находится в пределах:
15. Содержание углерода в штамповых сталях для горячего деформирования находится в пределах:
16. Повышенное содержание (до 11–13%) хрома характерно для:
1) штамповых сталей горячего деформирования умеренной теплостойкости и повышенной ударной вязкости
2) износостойких штамповых сталей для холодного деформирования
3) штамповых сталей высокой теплостойкости для горячего деформирования
4) высокопрочных штамповых сталей для холодного деформирования с повышенной ударной вязкостью
17. Расположите следующие группы режущих инструментальных материалов в порядке возрастания их теплостойкости: 1 – твердые сплавы, 2 – быстрорежущие стали, 3 – режущая керамика, 4 – природный алмаз:
18. Расположите следующие группы режущих инструментальных материалов в порядке возрастания их твердости: 1 – твердые сплавы,
2 – быстрорежущие стали, 3 – режущая керамика, 4 – природный алмаз:
19. Оптимальные температуры закалки 750–835°С и отпуска
200–300 °С характерны для сталей:
1) быстрорежущих (Р18);
2) углеродистых инструментальных (У10–У13);
3) штамповых сталей горячего деформирования умеренной теплостойкости и повышенной ударной вязкости (5ХНМ);
4) штамповых сталей горячего деформирования повышенной теплостойкости и ударной вязкости (4Х5МФС).
20. Оптимальные температуры закалки 820–870°С и отпуска
420–600 °С характерны для сталей:
1) быстрорежущих (Р18);
2) углеродистых инструментальных (У10–У13);
3) штамповых сталей горячего деформирования умеренной теплостойкости и повышенной ударной вязкости (5ХНМ);
4) штамповых сталей горячего деформирования повышенной теплостойкости и ударной вязкости (4Х5МФС).
21. Оптимальные температуры закалки 1000–1100°С и отпуска
540– 560 °С характерны для сталей:
1) быстрорежущих (Р18);
2) углеродистых инструментальных (У10–У13);
3) штамповых сталей горячего деформирования умеренной теплостойкости и повышенной ударной вязкости (5ХНМ);
4) штамповых сталей горячего деформирования повышенной теплостойкости и ударной вязкости (4Х5МФС).
22. Оптимальные температуры закалки 1220–1280 °С и отпуска 500–600 °С характерны для сталей:
1) быстрорежущих (Р18);
2) углеродистых инструментальных (У10–У13);
3) штамповых сталей горячего деформирования умеренной теплостойкости и повышенной ударной вязкости (5ХНМ);
4) штамповых сталей горячего деформирования повышенной теплостойкости и ударной вязкости (4Х5МФС).
23. Какие из инструментальных материалов работоспособны при температурах 800–1000 °С?
24. Какие из инструментальных материалов работоспособны при температурах 500–600 °С?
25. Цель легирования:
1) создание сталей с особыми свойствами (жаропрочность, коррозионная стойкость и т. д.);
2) получение гладкой поверхности;
3) повышение пластических свойств;
4) уменьшения поверхностных дефектов.
26. К карбидообразующим элементам относятся:
27. Какое содержание вредных примесей серы и фосфора содержится в высококачественных сталях:
1) до 0,04% серы и до 0,035% фосфора;
2) до 0,025% серы и до 0,025% фосфора;
3) до 0,015% серы и до 0,025% фосфора;
4) сера и фосфор отсутствуют.
28. Какой легирующий элемент обозначается буквой С при маркировке сталей?
29. Буква А при маркировке стали (например, 39ХМЮА, У12А) обозначает:
2) высококачественную сталь;
3) автоматную сталь;
4) сталь ферритного класса.
30. В сталях, используемых для изготовления строительных конструкций, содержание углерода должно быть:
2) от 0,35 до 0,45%;
31. К группе цементуемых сталей с неупрочняемой сердцевиной относится:
32. К штамповым сталям для горячего деформирования относятся:
33. Для изготовления мелкоразмерных режущих (слесарных) инструментов (метчиков, напильников, развёрток и др.) применяются:
4) 03Х18Н10, 17Х18Н9.
34. Основным легирующим элементом быстрорежущей стали является вольфрам. Каким легирующим элементом можно заменить часть дорогостоящего вольфрама?
35. Для получения высоких режущих свойств быстрорежущие стали подвергаются закалке при температуре 1220–1280 °С и трёхкратному отпуску при температуре 550–570 °С. Какая структура соответствует этой термообработке?
3) мартенсит отпуска;
36. Какой сплав получен методом порошковой металлургии?
37. Какие карбиды составляют основу твердого сплава Т5К10?
1) Карбид вольфрама + карбид титана;
2) карбид хрома + карбид молибдена;
3) карбид марганца + карбид хрома;
4) карбид молибдена + карбид вольфрама.
38. Какое химическое соединение лежит в основе нитридной керамики?
39. Основной особенностью режущей керамики является отсутствие связующей фазы. На какое свойство это отрицательно влияет?
1) Ударную вязкость;
2) возможность применения высоких скоростей резания;
3) разупрочнение при нагреве;
3) пластическую прочность.
40. Титан имеет две полиморфические модификации. При какой температуре происходит полиморфное превращение?
41. Латуни и бронзы – это сплавы на основе:
42. Латунь Л80. Цифра в маркировке обозначает:
2) временное сопротивление;
3) содержание меди;
4) содержание цинка.
43. Из предложенных марок сплавов выберите марку свинцовистой бронзы:
44. Какой из предложенных химических элементов является эффективным измельчителем зерна в магниевых жаропрочных сплавах?
45. Какое свойство алюминия используют для изготовления теплообменников в промышленных и бытовых холодильных установках?
1) Отражательную способность;
2) коррозионную стойкость;
4) электрическую проводимость.
46. Высокая коррозионная стойкость алюминиевых сплавов обусловлена:
1) типом кристаллической решетки;
2) наличием тонкой окисной плёнки Al2O3;
3) наличием примесей;
4) легированием хромом.
47. Какой из предложенных деформируемых алюминиевых сплавов подвергается упрочняемой термообработке?
48. Основным легирующим элементом литейных алюминиевых сплавов (силуминов) является:
49. Что не входит в признаки классификации полимеров?
1) Форма молекул;
3) отношение к нагреву;
4) количество макромолекул.
50. Какой из предложенных материалов относится к неорганическим полимерам?
1) Силикатные стёкла;
2) эпоксидная смола;
3) натуральный каучук;
4) синтетический каучук.
51. Какой из предложенных материалов относится к органическим полимерам?
3) фенолформальдегидная смола;
52. Какое свойство из предложенных является недостатком пластмасс?
1) Малая плотность;
2) невысокая теплостойкость;
3) химическая стойкость;
4) электроизоляционные свойства;
53. Резина отличается от других материалов высокими эластическими свойствами. Какой компонент резины влияет на эти свойства?
54. Стекла подразделяют на неорганические и органические. Какое стекло применяется для остекления самолётов?
55. Чем ситталы отличаются от неорганических стёкол?
1) Кристаллическим строением;
2) мелкозернистой структурой;
3) основой пластмассы;
4) видом стеклообразующего элемента.
56. Какое свойство ситталов делает их малочувствительными к поверхностным дефектам?
1) Отсутствие пористости;
2) большая абразивная стойкость;
3) небольшая усадка;
4) однородная микрокристаллическая структура.
57. Физико-механические свойства искусственного графита зависят от природы исходного сырья. Какие исходные материалы используются при производстве графита?
1) Нефтяной кокс и каменноугольный пек;
58. Композиционные материалы состоят из матрицы и упрочнителей. Какой из предложенных металлов может служить матрицей?
59. Композиционные материалы (КМ) типа «сэндвич» относятся:
1) к дисперсноупрочняемым КМ;
2) к слоистым КМ;
3) к армированным КМ;
4) к волокнистым.
60. САП – спеченная алюминиевая пудра представляет собой алюминий, упрочнённый окислами:
61. Какие матрицы относятся к угольным?
62. При вулканизации каучука используется:
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Марки бронзы
Бронза БрАЖ 9-4. Бронза БрБ2. Бронза БрКМц. Бронза БрОЦС. Бронза БрОФ. Бронза БрАМЦ.
Бронза - сплав меди с оловом и другими легирующими элементами (алюминий,железо,цинк,свинец,марганец,никель,кремний). Бронза по сравнению с латунью обладает более высокой прочностью, коррозионной стойкостью и антифрикционными свойствами. Бронзы изготовляют в виде прутков,листов,лент,проволоки. Таблица 1 поможет выбрать марку бронзы для изготовления необходимой детали.
Состав бронзы, механические свойстваи назначение бронз (1 Мн/м 2 " 0,1 кгс/мм 2 )
Из предложенных марок сплавов выберите марку свинцовистой бронзы 1 бра7
1. Титан имеет две полиморфические модификации. При какой тем- пературе происходит полиморфное превращение?
2. Латуни и бронзы – это сплавы на основе:
3. Латунь Л80. Цифра в маркировке обозначает:
2) временное сопротивление;
3) содержание меди;
4) содержание цинка.
4. Из предложенных марок сплавов выберите марку свинцовистой бронзы:
5. Какой из предложенных химических элементов является эффек- тивным измельчителем зерна в магниевых жаропрочных сплавах?
6. Какое свойство алюминия используют для изготовления теплооб- менников в промышленных и бытовых холодильных установках?
1) Отражательную способность;
2) коррозионную стойкость;
4) электрическую проводимость.
7. Высокая коррозионная стойкость алюминиевых сплавов обусловле-
1) типом кристаллической решетки;
2) наличием тонкой окисной плёнки Al2O3;
3) наличием примесей;
4) легированием хромом.
8. Какой из предложенных деформируемых алюминиевых сплавов под-
вергается упрочняемой термообработке?
9. Основным легирующим элементом литейных алюминиевых сплавов
10. Что не входит в признаки классификации полимеров?
1) Форма молекул;
3) отношение к нагреву;
4) количество макромолекул.
11. Какой из предложенных материалов относится к неорганическим полимерам?
1) Силикатные стёкла;
2) эпоксидная смола;
3) натуральный каучук;
4) синтетический каучук.
12. Какой из предложенных материалов относится к органическим полимерам?
3) фенолформальдегидная смола;
13. Какое свойство из предложенных является недостатком пласт- масс?
1) Малая плотность;
2) невысокая теплостойкость;
3) химическая стойкость;
4) электроизоляционные свойства;
14. Резина отличается от других материалов высокими эластиче- скими свойствами. Какой компонент резины влияет на эти свойства?
15. Стекла подразделяют на неорганические и органические. Какое стекло применяется для остекления самолётов?
16. Чем ситталы отличаются от неорганических стёкол?
1) Кристаллическим строением;
2) мелкозернистой структурой;
3) основой пластмассы;
4) видом стеклообразующего элемента.
17. Какое свойство ситталов делает их малочувствительными к по- верхностным дефектам?
1) Отсутствие пористости;
2) большая абразивная стойкость;
3) небольшая усадка;
4) однородная микрокристаллическая структура.
18. Физико-механические свойства искусственного графита зависят от природы исходного сырья. Какие исходные материалы используются при производстве графита?
1) Нефтяной кокс и каменноугольный пек;
19. Композиционные материалы состоят из матрицы и упрочните- лей. Какой из предложенных металлов может служить матрицей?
20. Композиционные материалы (КМ) типа «сэндвич» относятся:
1) к дисперсноупрочняемым КМ;
2) к слоистым КМ;
3) к армированным КМ;
4) к волокнистым.
21. САП – спеченная алюминиевая пудра представляет собой алюми- ний, упрочнённый окислами:
22. Какие матрицы относятся к угольным?
Библиографический список
1. Физическое металловедение: справ. Т. 1, 2, 3; под ред. У. Р. Кана и П. Хайзена. – М. : Металлургия, 1987. – с.
2. Металловедение и термическая обработка стали: справ. Т. 1, 2, 3;
под ред. М. Л. Бернштейна и Рахштадта. – М. : Металлургия, 1983.– с.
3. Термическая обработка в машиностроении: справ.; под ред. Ю. М. Лахтина и Рахштадта. – М. : Машиностроение, 1980. – 783 с.
4. Арзамасов, Б. Н. Материаловедение: учеб. для студентов вузов.
/Б. Н. Арзамасов и др.– 3-е изд. перераб. и доп. – М. : Изд–во МВТУ им. Н. Э. Баумана, 2001. – 734 с.
5. Лахтин, Ю. М. Материаловедение: учеб. для студентов вузов.
/Ю. М. Лахтин, В. П. Леонтьева. – 3-е изд. перераб. и доп. – М. : Машино- строение, 1990.– 528 с.
6. Гуляев, А. П. Металловедение: учеб. для вузов. /А. П. Гуляев. – 6-е изд. перераб. и доп. – М. : Металлургия, 1986. – 544 с.
7. Фетисов, Г. П. Материаловедение и технология металлов: учеб. –
М. : Высш. шк., 2001.– 638 с.
8. Куликов, И. Л. Материаловедение: уч. пособие. И. Л. Куликов. –
Омск : Изд-во ОТТИ, 2002. – 188 с.
9. Куликов, И. Л. Неметаллические и композиционные материалы: Учеб. пособие. /И. Л.Куликов. – Омск : Изд-во ОТТИ, 2001. – 102 с.
10. Машков, Ю. К. Конструкционные пластмассы и полимерные ком- позиционные материалы: учеб. пособие. /Ю.К. Машков, М.Ю. Байбарац- кая, Б.В. Григоревский. – Омск : Изд-во ОмГТУ, 2002.– 130 с.
11. Порошковая металлургия: справ.; под ред. И. М. Федорченко и др.
– Киев: Наукова Думка, 1985. – 624 с.
12. Каменев, Е. И. Применение пластических масс: справ. /Е. И. Каме- нев, Г. Д. Мясников, М. Н. Платонов. – Л. : Химия, 1985. – 540 с.
13. Геллер, Ю. А. Инструментальные стали. /Ю. А. Геллер. – М. : Ме- таллургия, 1975. – 584 с.: с ил.
14. Аверко-Антонович, Ю. О. Технология резиновых изделий: учеб. для студентов вузов. /Ю. О. Аверко-Антонович, Р. Я. Омельченко, Н. А. Охотина, Ю. Р. Эбич. – Л. : Химия, 1991. – 352 с.
15. Солнцев, Ю. П. Материаловедение и технология конструкционных материалов: учеб. для студентов вузов /Ю. П. Солнцев, В. А. Веселов, В. П. Демянцевич, А. В. Кузин, Д. И. Чашников.– М. : Металлургия, 1988.
16. Полевой, С. Н. Упрочнение машиностроительных материалов: справ.– 2-е. изд. – М. : Машиностроение, 1994. – 495 с.
17. Минкевич. А. Н. Химико-термическая обработка металлов и спла- вов. /Минкевич А. Н. – М. : Машиностроение, 1985.– 483 с.
18. Лахтин, Ю. М. Химико-термическая обработка металлов: учеб. пособие /Ю. М. Лахтин, Б. Н. Арзамасов.– М. : Металлургия, 1986.– 252 с.
19. Калачев, Б. А. Металловедение и термическая обработка цветных металлов и сплавов: учеб. для студентов вузов. / Б. А. Калачев. – 3-е. изд.– М. : Изд-во МИСиС, 1999. – 413 с.
20. Мозберг, Р. К. Материаловедение: учеб. для студентов вузов
/Р. К. Мозберг.– 2-е изд. перераб. и доп.– М. : Высшая школа, 1991.– 448 с.
21. Ричардсон, М. Промышленные композиционные материалы. /М.
Ричардсон. – М. : Химия, 1980. – 472 с.
22. Лоладзе, Т. Н. Прочность и износостойкость режущего инстру- мента. /Т. Н. Лоладзе. – М. : Машиностроение, 1982. – с.
23. Трент, Е. М. Резание металлов/Пер. с англ. Г. И. Айзенштока. –
М.: Машиностроение, 1980. – 263 с.: ил.
24. Гольштейн, М. И. Специальные стали: учеб. для вузов. / М. И. Гольштейн, С. В. Грачев, Ю. Г. Векслер.– М. : Металлургия, 1985.– 408 с.
25. Бельский, Е. И. Новые материалы в технике. / Е. И. Бельский, А. М. Дмитрович, Е. Б. Ложечников. – Мн. : Беларусь, 1971.– 272 с.: ил.
Читайте также: