Формула нахождения объема прямоугольного параллелепипеда и куба
6 граней, а они, в свою очередь, являются параллелограммами.
Параллелепипед, у которого 4 боковые грани — это прямоугольники, является прямым
Прямой параллелепипед, у которого все 6 граней прямоугольники, является прямоугольным.
Другими словами, прямоугольный параллелепипед — это объемная фигура, у которой есть 6 граней, и
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:
где, H - высота параллелепипеда,
a – длина параллелепипеда,
b – ширина параллелепипеда,
h - высота прямоугольного параллелепипеда,
Примеры прямоугольного параллелепипеда: спортивный зал, кирпич, картонная коробка или столешница
Длины 3 рёбер прямоугольного параллелепипеда, которые имеют общий конец, называются измерениями
прямоугольного параллелепипеда.
Прямоугольный параллелепипед с одинаковыми измерениями является кубом. Все 6 граней куба — это
Квадрат длины диагонали прямоугольного параллелепипеда = сумме квадратов 3 его измерений.
Объем прямого параллелепипеда, формула.
Как найти объем параллелепипеда?
Площадь боковой поверхности параллелепипеда, формула:
Площадь полной поверхности, формула
Формула объёма прямого параллелепипеда:
Объем произвольного параллелепипеда.
Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры.
Чему равен объём параллелепипеда? Объем параллелепипеда равен абсолютной величине смешанного
произведения трёх векторов, которые определяются 3-мя сторонами параллелепипеда, которые исходят
из одной вершины.
Соотношение длина сторон параллелепипеда – угол между ними даёт утверждение, что определитель
Объем призмы
Объем призмы равен произведению площади основания призмы, на высоту.
Формула объема призмы
- объем призмы,- площадь основания призмы,
-
Смотрите также
3. Формула для вычисления объема шара, сферы
R - радиус шара
По формуле, если дан радиус, можно найти объема шара, (V):
Объем конуса
Объем конуса равен трети от произведению площади его основания на высоту.
Формулы объема конуса
- объем конуса,- площадь основания конуса,
- радиус основания конуса,
- высота конуса,
π = 3.141592
Онлайн калькулятор. Объем параллелепипеда.
Используя этот онлайн калькулятор для вычисления объема параллелепипеда, вы сможете очень просто и быстро найти объем параллелепипеда, зная значения его высоты и площади основания.
Воспользовавшись онлайн калькулятором для вычисления объема параллелепипеда, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный материал.
4. Как вычислить объем цилиндра ?
h - высота цилиндра
r - радиус основания
По формуле найти объема цилиндра, есди известны - его радиус основания и высота, (V):
Свойства параллелепипеда
Быть параллелепипедом ー значит неотступно следовать законам геометрии. Иначе можно скатиться до простого параллелограмма.
Вот 4 свойства параллелепипеда, которые необходимо запомнить:
- Противолежащие грани параллелепипеда равны и параллельны друг другу.
- Все 4 диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
- Параллелепипед симметричен относительно середины его диагонали.
- Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Все формулы объемов геометрических тел
Диагонали прямоугольного параллелепипеда: теорема
Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.
Если есть теорема, нужно ее доказать. (с) Пифагор
Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.
Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.
Доказательство теоремы:
Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.
Все грани прямоугольного параллелепипеда — прямоугольники.
ΔABD: ∠BAD = 90°, по теореме Пифагора
ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора
d² = d₁² + c² = a² + b² + c²
d² = a² + b² + c²
Доказанная теорема — пространственная теорема Пифагора.
У нас есть отличные дополнительные онлайн занятия по математике для учеников с 1 по 11 классы, записывайся!
Объем пирамиды
Объем пирамиды равен трети от произведения площади ее основания на высоту.
Формула объема пирамиды
- объем пирамиды,- площадь основания пирамиды,
-
Смотрите также:,
5. Как найти объем конуса ?
R - радиус основания
H - высота конуса
Формула объема конуса, если известны радиус и высота (V):
Объем параллелепипеда
Объем параллелепипеда равен произведению площади основания на высоту.
Формула объема параллелепипеда
- объем параллелепипеда,- площадь основания,
- длина высоты.
Объем параллелепипеда
Чтобы без труда вычислить объём любой фигуры, нужно разобраться с определениями.
Объём — это количественная характеристика пространства, занимаемого телом или веществом.
Другими словами, это то, сколько места занимает предмет.
Объём измеряется в единицах измерения объема (единицах измерения размера пространства, занимаемого телом), то есть в кубических метрах, сантиметрах, миллиметрах.
За единицу измерения объёма можно принять куб с ребром 1 см, то есть, кубический сантиметр (см3), кубический миллиметр (1 мм3), кубический метр (1 м3).
Объём всегда выражается в положительных числах. Это число показывает, какое именно количество единиц измерения есть в теле. Например, сколько воды в бассейне, вина в бочке, земли в клумбе.
Два свойства объёма
- У равных тел равные объёмы. Если два тела одинаковы, и имеют равное количество единиц измерения — их объёмы равны. Например, у двух одинаковых пакетов сока равные объемы.
- Если геометрическое тело состоит из нескольких геометрических тел, то его объём равен сумме объёмов этих тел.
Любое объемное тело имеет объем. Получается, при желании мы можем вычислить объем кружки, смартфона, вазы, кота — чего угодно.
Площадь куба
Площадь поверхности куба равна квадрату длины его грани умноженному на шесть.
Формула площади куба
- площадь куба,- длина грани куба.
Площадь цилиндра
Площадь боковой поверхности круглого цилиндра равна произведению периметра его основания на высоту.
Формула для вычисления площади боковой поверхности цилиндра
Площадь полной поверхности круглого цилиндра равна сумме площади боковой поверхности цилиндра и удвоенной площади основания.
Объем цилиндра
Объем цилиндра равен произведению площади его основания на высоту.
-
Формулы объема цилиндра
V =
- площадь основания цилиндра,
- радиус цилиндра,
- высота цилиндра,
π = 3.141592
Найти объем параллелепипеда
Введите данные:
So | = |
h | = |
Ввод данных в калькулятор для вычисления объема параллелепипеда
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
N.B. В онлайн калькуляте можно использовать величины в однаквых единицах измерения!
Если у вас возниели трудности с преобразованием едениц измерения воспользуйтесь конвертером единиц расстояния и длины, конвертером единиц площади и конвертером единиц объема.
Дополнительные возможности калькулятора для вычисления объема параллелепипеда
- Между полями для ввода можно перемещаться нажимая клавиши "влево" и "вправо" на клавиатуре.
Прямоугольный параллелепипед. Что это такое?
Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань — параллелограмм.
На рисунке два параллелограмма АВСD и A1B1C1D1. Основания параллелепипеда, расположены параллельно друг другу в плоскостях. А боковые ребра АA1, ВB1, CC1, DD1 параллельны друг другу. Образовавшаяся фигура — параллелепипед.
Внимательно рассмотрите, как выглядит параллелепипед и каковы его составляющие.
Когда пересекаются три пары параллельных плоскостей, образовывается параллелепипед.
Основанием параллелепипеда является, в зависимости от его типа: параллелограмм, прямоугольник, квадрат.
Параллелепипед — это:
- основание;
- грани;
- ребра;
- диагонали;
- диагонали граней;
- высота.
Правильный параллелепипед на то и правильный, что два его измерения равны. Две грани такого правильного параллелепипеда — квадраты.
7. Формула объема усеченного конуса
r - радиус верхнего основания
R - радиус нижнего основания
h - высота конуса
Формула объема усеченного конуса, если известны - радиус нижнего основания, радиус верхнего основания и высота конуса (V ):
Объем шара
Объем шара равен четырем третим от его радиуса в кубе помноженого на число пи.
Формула объема шара
- объем шара,- радиус шара,
π = 3.141592
Материалы
Прямоугольный параллелепипед - это объёмная геометрическая фигура, грани которой, являются прямоугольниками.
Противоположенные грани одинаковы и параллельны. Все углы в параллелепипеде - прямые, т. е. 90 градусов.
a , b , c - стороны параллелепипеда
Формула объёма параллелепипеда, (V):
Калькулятор для расчета объёма параллелепипеда
R - радиус шара
π ≈ 3,14
Формула объема шара, ( V ):
Калькулятор - вычислить, найти объем шара, сферы
h - высота шарового слоя
R - радиус нижнего основания
r - радиус верхнего основания
Объем шарового слоя, (V):
Калькулятор - вычислить, найти объем шарового слоя
h - высота сегмента
R - радиус шара
Объем шарового сектора, (V):
Калькулятор - вычислить, найти объем шарового сектора
Шаровый сегмент - это часть шара отсеченная плоскостью. В данном примере, плоскостью ABCD.
R - радиус шара
h - высота сегмента
Объем шарового сегмента, (V):
Калькулятор - вычислить, найти объем шарового сегмента
Прямой цилиндр - это геометрическое тело, полученное в результате вращения прямоугольника, вокруг его стороны. Цилиндр имеет два основания, верхнее и нижнее, которые одинаковы и имеют форму круга.
Высота цилиндра - это отрезок, соединяющий две любые точки оснований но обязательно расположенный перпендикулярно к ним обоим.
r - радиус основания
h - высота цилиндра
Формула для расчета объема цилиндра, (V):
Калькулятор для расчета объема цилиндра
Прямой круговой конус - это геометрическое тело, полученное вращением прямоугольного треугольника вокруг катета. Тогда этот катет, является высотой, другой катет - радиус основания, а гипотенуза это образующая.
H - высота конуса
R - радиус основания
Формула объема конуса, (V):
Калькулятор для расчета объема конуса
Усеченный прямой конус - это конус, у которого отделена верхняя часть, плоскостью, параллельной основанию. В этом случае, появляется второе основание. Эти основания называют верхнее и нижнее, соответственно.
Высота усеченного конуса - это отрезок, соединяющий центры оснований и который расположен перпендикулярно к обоим основаниям.
R - радиус нижнего основания
r - радиус верхнего основания
h - высота конуса
Формула объема усеченного конуса, (V):
Калькулятор для расчета объема усеченного конуса
h - высота пирамиды
S - площадь основания ABCDE
Формула объема пирамиды, (V):
Калькулятор - вычислить, найти объем пирамиды
h - высота пирамиды
Sниж - площадь нижнего основания, ABCDE
Sверх - площадь верхнего основания, abcde
Формула объема усеченной пирамиды, (V):
Калькулятор - вычислить, найти площадь поверхности прямоугольного параллелепипеда
Пирамида в основании, которой лежит правильный многоугольник и грани равные, равнобедренные треугольники, называется правильной .
h - высота пирамиды
a - сторона основания пирамиды
n - количество сторон многоугольника в основании
Формула объема правильной пирамиды , (V):
Калькулятор - вычислить, найти объем правильной пирамиды
Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.
h - высота пирамиды
a - сторона основания
Формула объема правильной треугольной пирамиды, (V):
Калькулятор - вычислить, найти объем правильной треугольной пирамиды
Пирамида , у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой .
h - высота пирамиды
a - сторона основания
Формула объема правильной четырехугольной пирамиды, (V):
Калькулятор - вычислить, найти объем правильной четырехугольной пирамиды
Правильный тетраэдр- пирамида у которой все грани, равносторонние треугольники.
Куб: определение, свойства и формулы
Кубом называется прямоугольный параллелепипед, все три измерения которого равны.
Каждая грань куба — это квадрат.
Свойства куба:
- В кубе 6 граней, каждая грань куба — квадрат.
- Противолежащие грани параллельны друг другу.
- Все углы куба, образованные двумя гранями, равны 90°.
- У куба четыре диагонали, которые пересекаются в центре куба и делятся пополам.
- Диагонали куба равны.
- Диагональ куба в √3 раз больше его ребра.
- Диагональ грани куба в √2 раза больше длины ребра.
Помимо основных свойств, куб характеризуется умением вписывать в себя тетраэдр и правильный шестиугольник.
Формулы куба:
- Объем куба через длину ребра a
V = a3 - Площадь поверхности куба
S = 6a2 - Периметр куба
P = 12a
Объем прямоугольного параллелепипеда
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Формула объема прямоугольного параллелепипеда
- объем прямоугольного параллелепипеда,Формула нахождения объема прямоугольного параллелепипеда и куба
Объем куба равен кубу длины его грани.
Формула объема куба
- объем куба,- длина грани куба.
9. Объем правильной четырехугольной пирамиды
Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.
a - сторона основания
h - высота пирамиды
Формула для вычисления объема правильной четырехугольной пирамиды, (V):
Теория. Объем параллелепипеда.
Формула для вычисления объема параллелепипеда
Объем параллелепипеда равен произведению площади основания на высоту.
где V - объем параллелепипеда,
So - площадь основания параллелепипеда,
h - высота параллелепипеда,
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
© 2011-2021 Довжик МихаилКопирование материалов запрещено.
Объем правильного тетраэдра
Формула объема правильного тетраэдра
- объем правильного тетраэдра,- длина ребра правильного тетраэдра.
10. Объем правильной треугольной пирамиды
Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.
a - сторона основания
h - высота пирамиды
Формула объема правильной треугольной пирамиды, если даны - высота и сторона основания (V):
2. Найти по формуле, объем прямоугольного параллелепипеда
a , b , c - стороны параллелепипеда
Еще иногда сторону параллелепипеда, называют ребром.
Формула объема параллелепипеда, (V):
Свойства прямоугольного параллелепипеда
Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда.
- Прямоугольный параллелепипед содержит 6 граней. Все грани прямоугольного параллелепипеда — прямоугольники.
- Противолежащие грани параллелепипеда попарно параллельны и равны.
- Все углы прямоугольного параллелепипеда, состоящие из двух граней — 90°.
- Диагонали прямоугольного параллелепипеда равны.
- В прямоугольный параллелепипеде четыре диагонали, которые пересекаются в одной точке и делятся этой точкой пополам.
- Любая грань прямоугольного параллелепипеда может быть принята за основание.
- Если все ребра прямоугольного параллелепипеда равны, то такой параллелепипед является кубом.
- Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).
Формулы прямоугольного параллелепипеда:
- Объем прямоугольного параллелепипеда
V = a · b · h
a — длина, b — ширина, h — высота - Площадь боковой поверхности
Sбок = Pосн·c=2(a+b)·c
Pосн — периметр основания, с — боковое ребро - Площадь поверхности
Sп.п = 2(ab+bc+ac)
Формула нахождения объема прямоугольного параллелепипеда и куба
Пусть рёбра будут равны а, b, с.
Пусть ребро куба равно а.
*Понятно, что формулы куба являются следствием из соответствующих формул прямоугольного параллелепипеда. Куб – это параллелепипед, у которого все рёбра равны, грани являются квадратами.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 5 и 8. Площадь поверхности этого параллелепипеда равна 210. Найдите третье ребро, выходящее из той же вершины.
Обозначим известные ребра за а и b, а неизвестное за c.
Тогда формула площади поверхности параллелепипеда выражается как:
Остаётся подставить данные и решить уравнение:
Площадь поверхности куба равна 200. Найдите его диагональ.
Построим диагональ куба:
Площадь поверхности куба выражается через его ребро а как S = 6а 2 , значит можем найти ребро а:
Диагональ грани куба по теореме Пифагора равна:
Диагональ куба по теореме Пифагора равна:
*Можно было сразу воспользоваться формулой диагонали куба:
Объем куба равен 343. Найдите площадь его поверхности.
Площадь поверхности куба выражается через его ребро а как S = 6 а 2 , а объем равен V = а 3 . Значит можем найти ребро куба и затем вычислить площадь поверхности:
Таким образом, площадь поверхности куба равна:
27060. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1 и 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.
Диагональ параллелепипеда вычисляется по формуле:
где а, b и с рёбра.
Найдём третье ребро. Мы можем это сделать воспользовавшись формулой площади поверхности параллелепипеда:
Подставляем данные и решаем уравнение:
Таким образом, диагональ будет равна:
27063. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.
В основании правильной четырёхугольной призмы лежит квадрат. Понятно, что она является параллелепипедом. Формулы применяются те же. Пусть боковое ребро будет равно х. Его мы можем найти используя формулу площади поверхности:
Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,8 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.
Единичный куб это куб с ребром равным 1.
Площадь поверхности получившегося многогранника можно вычислить следующим образом: от площади поверхности куба нужно вычесть две площади основания вырезанной призмы и прибавить четыре площади боковой грани вырезанной призмы со сторонами 1 и 0,8:
Площадь грани прямоугольного параллелепипеда равна 48. Ребро, перпендикулярное этой грани, равно 8. Найдите объем параллелепипеда.
Достаточно применить формулу объёма.
Объем прямоугольного параллелепипеда равен произведению трёх его ребер, или произведению площади основания на высоту. В данном случае роль основания играет грань, роль высоты ребро, которое ей перпендикулярно. Получим:
Следующие задачи вы решите без труда.
27077. Объем прямоугольного параллелепипеда равен 64. Одно из его ребер равно 4. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру. Ответ: 16.
27078. Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани. Ответ: 5.
27079. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 8 и 6. Объем параллелепипеда равен 240. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Ответ: 4.
Ещё для самостоятельного решения:
27054. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.
27055. Площадь поверхности куба равна 18. Найдите его диагональ.
27056. Объем куба равен 8. Найдите площадь его поверхности.
27075. Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности получившегося многогранника.
27076. Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда.
Диагональ куба равна корню из трёхсот. Найдите его объем.
Обозначим ребро куба как a.
Объём куба вычисляется по формуле:
То есть для нахождения объёма куба необходимо найти его ребро.
Диагональ куба находится по формуле:
Это задача обратная предыдущей.
Диагональ куба находится по формуле:
Выразим ребро куба из формулы объёма подставим:
*Если вы хотите вспомнить как работать со степенями и корнями, тогда вам сюда .
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 72 и 18. Диагональ параллелепипеда равна 78. Найдите объем параллелепипеда.
Пусть рёбра параллелепипеда равны a, b и с.
Для нахождения объёма нам необходимо знать его третье ребро. Как его найти?
Мы можем воспользоваться формулой диагонали параллелепипеда:
Вычислим неизвестное ребро:
Таким образом, объём параллелепипеда равен:
*При разности квадратов используйте формулу , решение упрощается.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 12 и 6. Объем параллелепипеда равен 864. Найдите его диагональ.
Задача обратная предыдущей. Для того, чтобы найти диагональ, необходимо знать чему равно третье ребро. Мы можем вычислить его воспользовавшись формулой объёма:
Диагональ параллелепипеда равна:
Диагональ куба равна 41. Найдите площадь его поверхности.
Площадь поверхности куба равна:
Формула длины диагонали куба:
Выразим ребро и подставим полученное выражение в формулу площади поверхности:
Тогда площадь поверхности куба:
Площадь поверхности куба равна 216. Найдите его объем.
Площадь поверхности куба со стороной равна S = 6 a 2 .
Найдём ребро куба:
Объем куба равен:
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 4. Диагональ параллелепипеда равна 6. Найдите площадь поверхности параллелепипеда.
Для того, чтобы вычислить площадь поверхности необходимо знать третье ребро:
Используем формулу длины диагонали:
27128. Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности. Ответ: 22.
27146. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1 и 2 Объем параллелепипеда равен 6. Найдите площадь его поверхности. Ответ: 22
27098. Диагональ куба равна корню из двенадцати. Найдите его объем.
27101. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Найдите его диагональ.
Площадь прямоугольного параллелепипеда
Формула площади поверхности прямоугольного параллелепипеда
- площадь прямоугольного параллелепипеда,Прямоугольный параллелепипед
Определение прямоугольного параллелепипеда:
Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.
На рисунке: основание прямоугольного параллелепипеда ABCD; боковое ребро АА1 перпендикулярно АВСD; угол BAD = 90°Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.
Объем прямоугольного параллелепипеда
Давайте вспомним, какие виды параллелепипедов бывают.
Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань которой называется параллелограмм.
Призма — это многогранник, в основаниях которого лежат равные многоугольники, а его боковые грани — это параллелограммы.
Какие бывают призмы:
Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.
Прямоугольным параллелепипедом называют параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.
Формула объема прямоугольного параллелепипеда
Чтобы вычислить объем прямоугольного параллелепипеда, найдите произведение его длины, ширины и высоты:
V = a * b * h
Чтобы не запутаться в формулах, запоминайте табличку с условными обозначениями.
Формула объема.
Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.
Объем фигуры - это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.
Параллелепипед.
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.
Цилиндр.
Объем цилиндра равен произведению площади основания на высоту.
Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.
Пирамида.
Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).
Правильная пирамида — это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.
Правильная треугольная пирамида — это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.
Правильная четырехугольная пирамида — это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.
Тетраэдр — это пирамида, у которой все грани — равносторонние треугольники.
Усеченная пирамида.
Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.
Куб.
Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .
Конус — это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.
Усеченный конус получится, если в конусе провести сечение, параллельное основанию.
V = 1/3 πh (R 2 + Rr + r 2 )
Шар.
Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.
Призма.
Объем призмы равен произведению площади основания призмы, на высоту.
Сектор шара.
Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.
Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.
Сегмент шара - это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом
Решение задач
Чтобы считать тему прямоугольного параллелепипеда раскрытой, стоит потренироваться в решении задач. 10 класс — время настоящей геометрии для взрослых. Поэтому, чем больше практики, тем лучше. Разберем несколько примеров.
Задачка 1. Дан прямоугольный параллелепипед. Нужно найти сумму длин всех ребер параллелепипеда и площадь его поверхности.
Для наглядного решения обозначим измерения прямоугольного параллелепипеда: a - длина, b - ширина, c - высота. Тогда a = 10, b = 5, c = 8.
Так как в прямоугольном параллелепипеде всего по 4 — высота, ширина и длина, и все измерения равны между собой, то:
1) 4 * 10 = 40 (см) - сумма длин параллелепипеда;
2) 4 * 5 = 20 (см) - суммарное значение ширины параллелепипеда;
3) 4 * 8 = 32 (см) - сумма высот параллелепипеда;
4) 40 + 20 + 32 = 92 (см) - сумма длин всех ребер прямоугольного параллелепипеда.
Отсюда можно вывести формулу по нахождению суммы длин всех сторон ПП:
X = 4a + 4b + 4c (где X - сумма длин ребер).
Формула нахождения площади поверхности параллелепипеда Sп.п = 2(ab+bc+ac).
Тогда: S = (5*8 + 8*10 + 5*10) * 2 = 340 см2.
Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
Нужно найти длину ребра A1B1.
В фокусе внимания треугольник BDD1.
Угол D = 90°. Против равных сторон лежат равные углы.
По теореме Пифагора:
BD1 2 = DD1 2 + BD 2
BD 2 = BD1 2 – DD1 2
BD 2 = 26 – 9 = 17
BD = √17
В треугольнике ADB угол А = 90°.
BD 2 = AD 2 + AB 2
AB 2 = BD 2 - AD 2 = (√17)2 — 4 2 = 1
A1B1 = AB.
Задачка 3. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
AB = 4
AD = 6
AA1= 5
Нужно найти отрезок BD1.
В треугольнике ADB угол A = 90°.
По теореме Пифагора:
BD 2 = AB 2 +AD 2
BD 2 = 4 2 + 6 2 = 16 + 36 = 52
В треугольнике BDD1 угол D = 90°.
BD1 2 = 52 + 25 = 77.
11. Найти объем правильной пирамиды
Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.
h - высота пирамиды
a - сторона основания пирамиды
n - количество сторон многоугольника в основании
Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):
Самопроверка
Теперь потренируйтесь самостоятельно — мы верим, что все получится!
Задачка 1. Дан прямоугольный параллелепипед. Измерения (длина, ширина, высота) = 8, 10, 20. Найдите диагональ параллелепипеда.
Подсказка: если нужно выяснить, чему равна диагональ прямоугольного параллелепипеда, вспоминайте теорему.
Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
Вычислите длину ребра AA1.
Как видите, самое страшное в параллелепипеде — 14 букв в названии. Чтобы не перепутать прямой параллелепипед с прямоугольным, а ребро параллелепипеда с длиной диагонали параллелепипеда, вот список основных понятий:
8. Объем правильного тетраэдра
Правильный тетраэдр - пирамида у которой все грани, равносторонние треугольники.
а - ребро тетраэдра
Формула, для расчета объема правильного тетраэдра (V):
Прямой параллелепипед
Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.
Основание прямого параллелепипеда — параллелограмм. В прямом параллелепипеде боковые грани — прямоугольники.
На рисунке: ребро АА1 перпендикулярно основанию ABCD. АА1 перпендикулярна прямым АB и АD, которые лежат в плоскости основанияСвойства прямого параллелепипеда:
- Основания прямого параллелепипеда — одинаковые параллелограммы, лежащие в параллельных плоскостях.
- Боковые ребра прямого параллелепипеда равны, параллельны и перпендикулярны плоскостям оснований.
- Высота прямого параллелепипеда равна длине бокового ребра.
- Противолежащие боковые грани прямого параллелепипеда — равные прямоугольники.
- Диагонали прямого параллелепипеда точкой пересечения делятся пополам.
На слух все достаточно занудно и сложно, но на деле все свойства просто описывают фигуру. Внимательно прочтите вслух каждое свойство, разглядывая рисунок параллелепипеда после каждого пункта. Все сразу встанет на места.
Формулы прямого параллелепипеда:
- Площадь боковой поверхности прямого параллелепипеда
Sб = Ро*h
Ро — периметр основания
h — высота - Площадь полной поверхности прямого параллелепипеда
Sп = Sб+2Sо
Sо — площадь основания - Объем прямого параллелепипеда
V = Sо*h
Читайте также: