Формула нахождения диагонали куба
Правильный многогранник, все грани которого являются квадратами, называется кубом. Все ребра у куба равны, а углы прямые. Диагональ стороны куба d или его боковой грани, представляющей собой квадрат, определяем по формуле диагонали квадрата, как произведение стороны квадрата (ребра куба) (а) на корень квадратный из двух: d=a√2
Диагональю куба является отрезок, который соединяет две вершины, расположенные на противоположных сторонах куба. Вершины расположены симметрично по отношению к центру куба. Для определения диагонали куба вписываем в куб прямоугольный треугольник, соединив диагональ куба, диагональ основания и боковое ребро, исходящее из вершины основания. Воспользовавшись теоремой Пифагора, вычисляем диагональ куба, которая равна произведению ребра куба (а) на корень квадратный из трех.
Примеры задач
Задание 1
Найдите площадь поверхности куба, если длина его ребра составляет 12 см.
Решение:
Используем первую формулу выше и получаем:
S = 6 ⋅ (12 см) 2 = 864 см 2 .
Задание 2
Площадь поверхности куба равняется 294 см 2 . Вычислите длину его ребра.
Решение:
Примем ребро куба за a. Из формулы расчета площади следует:
Задание 3
Вычислите площадь поверхности куба, если диагональ его грани равняется 5 см.
Решение:
Воспользуемся формулой, в которой задействована длина диагонали:
S = 6 ⋅ (5 см : √ 2 ) 2 = 75 см 2 .
Примеры задач
Задание 1
Вычислите объем куба, если его ребро равняется 5 см.
Решение:
Подставляем в формулу заданное значение и получаем:
V = 5 см ⋅ 5 см ⋅ 5 см = 125 см 3 .
Задание 2
Известно, что объем куба равен 512 см 3 . Найдите длину его ребра.
Решение:
Пусть ребро куба – это a. Выведем его длину из формулы расчета объема:
Задание 3
Длина диагонали грани куба составляет 12 см. Найдите объем фигуры.
Решение:
Применим формулу, в которой используется диагональ грани:
Куб. Объем куба. Диагональ куба. Площадь поверхности куба
Факт 1.
\(\bullet\) Куб – это прямоугольный параллелепипед, все грани которого – равные квадраты.
\(\bullet\) Следовательно:
— \(>>>\) ищется по следующей формуле (где \(a\) – ребро куба): \[<<\large
Факт 2.
\(\bullet\) Если сфера вписана в куб (то есть касается всех его граней), то ее радиус равен \(0,5a\) , где \(a\) – ребро куба.
\(\bullet\) Если сфера описана около куба (то есть все вершины куба лежат на сфере), то ее радиус равен \(0,5d\) , где \(d\) – диагональ куба.
\(\bullet\) Центр сферы, вписанной в куб или описанной около куба, лежит в точке пересечения диагоналей куба.
Нахождение объема куба: формула и задачи
В данной публикации мы рассмотрим, как можно найти объем куба и разберем примеры решения задач для закрепления материала.
Содержание скрыть- Формула вычисления объема куба
- Примеры задач
Нахождение площади поверхности куба: формула и задачи
В данной публикации мы рассмотрим, как можно найти площадь поверхности куба и разберем примеры решения задач для закрепления материала.
Содержание скрыть- Формула вычисления площади куба
- 1. Через длину ребра
- 2. Через длину диагонали грани
Формула нахождения диагонали куба
Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.
Свойства куба:
1. В кубе $6$ граней и все они являются квадратами.
2. Противоположные грани попарно параллельны.
3. Все двугранные углы куба – прямые.
4. Диагонали равны.
5. Куб имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
6. Диагональ куба в $√3$ раз больше его ребра
7. Диагональ грани куба в $√2$ раза больше длины ребра.
Пусть $а-$длина ребра куба, $d-$диагональ куба, тогда справедливы формулы:
Площадь полной поверхности: $S_=6а^2=2d^2$
Радиус сферы, описанной около куба: $R=/$
Радиус сферы, вписанной в куб: $r=/$
При увеличении всех линейных размеров куба в $k$ раз, его объём увеличится в $k^3$ раз.
При увеличении всех линейных размеров куба в $k$ раз, площадь его поверхности увеличится в $k^2$ раз.
Прямоугольный параллелепипед
Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.
1. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).
Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.
Чтобы были понятны формулы, введем обозначения:
$с$-высота(она же боковое ребро);
$S_$-площадь полной поверхности;
$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.
Пирамида
Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) - треугольники, имеющие общую вершину.
Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.
Формулы вычисления объема и площади поверхности правильной пирамиды.
$h_a$ - высота боковой грани (апофема)
В основании лежат правильные многоугольники, рассмотрим их площади:
- Для равностороннего треугольника $S=√3>/$, где $а$ - длина стороны.
- Квадрат $S=a^2$, где $а$ - сторона квадрата.
Задачи на нахождение объема составного многогранника:
- Разделить составной многогранник на несколько параллелепипедов.
- Найти объем каждого параллелепипеда.
- Сложить объемы.
Задачи на нахождение площади поверхности составного многогранника.
- Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:
Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.
- Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Формула вычисления объема куба
1. Через длину ребра
Объем (V) куба равняется произведению его длины на ширину на высоту. Т.к. данные величины у куба равны, следовательно, его объем равен кубу любого ребра.
V = a ⋅ a ⋅ a = a 3
2. Через длину диагонали грани
Как мы знаем, грани куба равны между собой и являются квадратом, сторона которого может быть найдена через длину диагонали по формуле: a=d/√ 2 .
Следовательно, вычислить объем куба можно так:
Диагональ куба
Куб является базовым геометрическим телом, когда речь заходит об объеме и объемных телах. Недаром третья степень, которая получается умножением трех одинаковых чисел друг на друга (как при нахождении объема куба - трех его измерений одинаковых измерений) названа в его честь.
Основным и единственным параметром куба является его ребро a,так как все ребра у куба конгруэнтны, и представляют собой одновременно и длину, и ширину, и высоту. Соответственно, всего одно значение определяет все возможные характеристики куба, связанные с его измерениями.
Помимо ребер, вершины куба можно соединить диагоналями. Диагонали могут проходить через грани куба, тогда они будут просто диагональю основания или диагональю квадрата в плоскости, либо диагонали могут быть проведены внутри самого куба, соединяя противоположные основания в крайних точках (вершинах).
Чтобы найти диагональ куба через его ребро, необходимо сначала провести дополнительное построение в виде диагонали одного из соединяемых оснований, тогда диагональ куба станет гипотенузой новоиспеченного прямоугольного треугольника, катетами которого являются ребро куба и диагональ основания. Если ребро куба задано условиями задачи, то диагональ квадрата в основании придется сначала вычислить по формуле: d=a√2
Тогда диагональ куба можно будет выразить через теорему Пифагора, и она примет следующий вид:
Диагональ куба
Диагональ куба – это отрезок, соединяющий вершину верхнего основания с вершиной нижнего основания, лежащей напротив, таким образом, что диагональ проходит сквозь внутреннее пространство куба под углом 45 градусов. Для того чтобы найти диагональ куба, достаточно знать его ребро и правильно оформить чертеж. Если провести диагональ нижнего основания из той же вершины, что и диагональ куба, то мы получим внутри куба прямоугольный треугольник, сторонами которого будут ребро куба, диагональ основания и сама диагональ куба. Для того чтобы найти диагональ куба в этом треугольнике по теореме Пифагора, необходимо сначала найти диагональ основания. Так как в основании куба лежит квадрат, то его диагональ равна , где a – сторона квадрата, совпадающая с ребром куба. Получаем, что катеты необходимого треугольника равны и a , а гипотенуза равна корню из суммы их квадратов:
Формула вычисления площади куба
1. Через длину ребра
Площадь (S) поверхности куба равна произведению числа 6 на длину его ребра в квадрате.
S = 6 ⋅ a 2
Данная формула получена следующим образом:
-
Куб – это правильная геометрическая фигура, все грани которого являются равными квадратами с длиной стороны a (одновременно является ребром куба).
2. Через длину диагонали грани
Сторона любой грани куба (ребро) может быть рассчитана через длину ее диагонали по формуле: a=d/√ 2 .
Это значит, что вычислить площадь поверхности фигуры можно так:
S = 6 ⋅ (d/√ 2 ) 2
Диагональ куба
Диагональ куба – это отрезок, который находится во внутреннем пространстве куба, благодаря тому, что его вершины находятся на противоположных сторонах. Поэтому для того чтобы представить диагональ куба в алгебраическом виде, необходимо заключить ее в фигуру, соединив данную диагональ и боковое ребро, исходящее из любой вершины диагонали через диагональ основания. Получив, таким образом, прямоугольный треугольник, можно составить отношение сторон по теореме Пифагора и вывести формулу для диагонали куба. Ребро куба будет равно отношению диагонали к корню из трех. a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3 a=D/√3
Площадь стороны куба равна ребру куба, возведенному во вторую степень, площадь боковой поверхности представляет собой четыре таких площади стороны, а площадь полной поверхности состоит из 6 граней. Площади куба, выраженные через диагональ, принимают следующий вид: S=a^2=D^2/3 S_(б.п.)=4a^2=(4D^2)/3 S_(п.п.)=6a^2=2D^2
Объем куба равен его ребру в третьей степени, а объем куба, зная диагональ куба, будет равен диагонали, возведенной в третью степень, и деленной на три корня из трех. V=a^3=D^3/(3√3)
Чтобы вычислить периметр куба, нужно ребро куба умножить на двенадцать. Если выразить периметр грани через диагональ куба, то он примет вид отношения диагонали, умноженной на четыре корня из трех. P=12a=4√3 D
Чтобы найти диагональ стороны куба, то есть диагональ, лежащую на боковой грани, можно воспользоваться формулой диагонали квадрата, которая выглядит как произведение стороны квадрата/ребра куба на корень из двух. d=a√2=(D√2)/√3
Радиус вписанной в куб сферы равен половине ребра куба, то есть диагонали куба, деленной на два корня из трех, а радиус описанной вокруг куба сферы равен половине самой диагонали куба. (рис. 2.2, рис.2.3) r=a/2=D/(2√3) R=D/2
Диагональ стороны куба
Диагональ стороны куба является диагональю квадрата, который представляет собой грань куба. Исходя из этого, ребро куба может быть вычислено по формуле отношения диагонали стороны куба к корню из двух. a=d/√2
Тогда площадь стороны куба, равная квадрату его ребра, будет рассчитываться как квадрат диагонали, деленный на два. Чтобы вычислить площадь боковой и полной поверхности куба, необходимо умножить полученное выражение на 4 или 6 соответственно. S=a^2=d^2/2 S_(б.п.)=4a^2=(4d^2)/2=2d^2 S_(п.п.)=6a^2=(6d^2)/2=3d^2
Чтобы вычислить объем куба, нужно возвести его ребро в третью – кубическую – степень, для этого все выражение, полученное для ребра куба через диагональ его стороны, возводится в степень. V=a^3=(d/√2)^3=d^3/(2√2)
Периметр куба равен ребру куба, умноженному на двенадцать. Подставив вместо ребра куба выражение через диагональ и сократив коэффициенты, получим следующую формулу для периметра: P=12a=12d/√2=6√2 d
Диагональ куба через диагональ его стороны можно найти, используя теорему Пифагора, согласно которой квадрат диагонали куба равен сумме квадратов диагонали стороны и бокового ребра, соединенных в прямоугольный треугольник. (рис.2.1.) a^2+d^2=D^2 D^2=d^2/2+d^2 D^2=(3d^2)/2 D=√(3/2) d
Чтобы вычислить радиус сферы, вписанной в куб, необходимо разделить на два ребро куба, то есть разделить на два корня из двух диагональ его стороны. Радиус сферы, описанной вокруг куба, в свою очередь равен половине диагонали куба, вместо которой также можно использовать полученное через диагональ стороны выражение. (рис.2.2.,2.3) r=a/2=d/(2√2) R=D/2=(√(3/2) d)/2
Читайте также: