Должен ли отрезок перпендикулярный плоскости обязательно пересекать эту плоскость в кубе
Отрезок называется _|_ - ным плоскости, если он перпендикулярен к каждой прямой, принадлежащей плоскости.
Остальные ответы
Перпендикуляром к плоскости называется такой отрезок, лежащий на прямой, перпендикулярной этой плоскости, один конец которого ( называемый основанием) лежит на данной плоскости, а другой лежит вне её.
В Google же это всё есть
vasiya vaxtovikovМудрец (13753) 10 месяцев назад
Утверждение не верно.
Артем Худорожков Ученик (186) vasiya vaxtovikov, Тогда хз
Отрезок называется перпендикулярным плоскости если он лежит в двух плоскостях перпендикулярных данной. Но ты ещё это доказать должен уметь, а уроки геометрии и черчения тут не проханже!
Перпендикулярность прямой и плоскости – признак и условия перпендикулярности
Для нахождения выявления перпендикулярности необходимо использовать достаточное условие перпендикулярности прямой и плоскости. Оно гарантирует выполнение перпендикулярности прямой и плоскости. Данное условие считается достаточным и называют признаком перпендикулярности прямой и плоскости.
Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, которые лежат в этой плоскости.
Подробное доказательство приведено в учебнике геометрии 10 - 11 класса. Теорема применяется для решения задач, где необходимо установить перпендикулярность прямой и плоскости.
При условии параллельности хоть одной из прямых плоскости, считается, что вторая прямая также перпендикулярна к данной плоскости.
Признак перпендикулярности прямой и плоскости рассматривается еще со школы, когда необходимо решить задачи по геометрии. Рассмотрим подробнее еще одно необходимое и достаточное условие, при котором прямая и плоскость будут перпендикулярны.
Для того, чтобы прямая а была перпендикулярна плоскости γ , необходимым и достаточным условием является коллинеарность направляющего вектора прямой а и нормального вектора плоскости γ .
ДоказательствоПри a → = ( a x , a y , a z ) являющимся вектором прямой a , при n → = ( n x , n y , n z ) являющимся нормальным вектором плоскости γ для выполнения перпендикулярности нужно, чтобы прямая a и плоскость γ принадлежали выполняемости условия коллинеарности векторов a → = ( a x , a y , a z ) и n → = ( n x , n y , n z ) . Отсюда получаем, что a → = t · n → ⇔ a x = t · n x a y = t · n y a z = t · n z , t является действительным числом.
Данное доказательство основывается на необходимом и достаточном условии перпендикулярности прямой и плоскости, направляющего вектора прямой и нормального вектора плоскости.
Нужна помощь преподавателя? Опиши задание — и наши эксперты тебе помогут! Описать заданиеДанное условие применимо для доказательства перпендикулярности прямой и плоскости, так как достаточно найти координаты направляющего вектора прямой и координаты нормального вектора в трехмерном пространстве, после чего производить вычисления. Используется для случаев, когда прямая определена уравнением прямой в пространстве, а плоскость уравнением плоскости некоторого вида.
Доказать перпендикулярность заданной прямой x 2 - 1 = y - 1 2 = z + 2 2 - 7 с плоскостью x + 2 2 + 1 y - ( 5 + 6 2 ) z .
Знаменатели канонических уравнений являются координатами направляющего вектора данной прямой. Отсюда имеем, что a → = ( 2 - 1 , 2 , 2 - 7 ) является направляющим вектором прямой x 2 - 1 = y - 1 2 = z + 2 2 - 7 .
В общем уравнении плоскости коэффициенты перед переменными x , y , z являются координатами нормального вектора данной плоскости. Отсюда следует, что n → = ( 1 , 2 ( 2 + 1 ) , - ( 5 + 6 2 ) ) - это нормальный вектор плоскости x + 2 2 + 1 y - ( 5 + 6 2 ) z - 4 = 0
Необходимо произвести проверку выполнимости условия. Получаем, что
2 - 1 = t · 1 2 = t · 2 ( 2 + 1 ) 2 = t · ( - ( 5 + 6 2 ) ) ⇔ t = 2 - 1 , тогда векторы a → и n → связаны выражением a → = ( 2 - 1 ) · n → .
Это и есть коллинеарность векторов. отсюда следует, что прямая x 2 - 1 = y - 1 2 = z + 2 2 - 7 перпендикулярна плоскости x + 2 ( 2 + 1 ) y - ( 5 + 6 2 ) z - 4 = 0 .
Ответ: прямая и плоскость перпендикулярны.
Определить, перпендикулярны ли прямая y - 1 = 0 x + 4 z - 2 = 0 и плоскость x 1 2 + z - 1 2 = 1 .
Чтобы ответить на вопрос перпендикулярности, необходимо, чтобы было выполнено необходимое и достаточное условие, то есть для начала нужно найти вектор заданной прямой и нормальный вектор плоскости.
Из прямой y - 1 = 0 x + 4 z - 2 = 0 видно, что направляющий вектор a → - это произведение нормальных векторов плоскости y - 1 = 0 и x + 4 z - 2 = 0 .
Отсюда получаем, что a → = i → j → k → 0 1 0 1 0 4 = 4 · i → - k → .
Координаты вектора a → = ( 4 , 0 , - 1 ) .
Уравнение плоскости в отрезках x 1 2 + z - 1 2 = 1 является эквивалентным уравнению плоскости 2 x - 2 z - 1 = 0 , нормальный вектор которой равен n → = ( 2 , 0 , - 2 ) .
Следует произвести проверку на коллинеарность векторов a → = ( 4 , 0 , - 1 ) и n → = ( 2 , 0 , - 2 ) .
Для этого запишем:
4 = t · 2 0 = t · 0 - 1 = t · ( - 2 ) ⇔ t = 2 t ∈ R ⇔ t ∈ ∅ t = 1 2
Отсюда делаем вывод о том, что направляющий вектор прямой не коллинеарен нормальному вектору плоскости. Значит, y - 1 = 0 x + 4 z - 2 = 0 - это прямая, не перпендикулярная к плоскости x 1 2 + z - 1 2 .
1. Перпендикуляр и наклонная
Наклонной , проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.
Конец отрезка, лежащий в плоскости, называется основанием наклонной .
\(AB\) — наклонная;
\(B\) — основание наклонной.
Перпендикуляром , проведённым из данной точки к данной плоскости, называется отрезок, соединяющий данную точку с точкой плоскости, и лежащий на прямой, перпендикулярной плоскости.
Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра .
\(AC\) — перпендикуляр;
\(C\) — основание перпендикуляра.
Расстоянием от точки до плоскости называется длина перпендикуляра , проведённого из этой точки к плоскости.
Отрезок, соединяющий основания перпендикуляра и наклонной, проведённых из одной и той же точки, называется проекцией наклонной .
\(CB\) — проекция наклонной \(AB\) на плоскость α .
Треугольник \(ABC\) прямоугольный.
Углом между наклонной и плоскостью называется угол между этой наклонной и её проекцией на плоскость.
∢ \(CBA\) — угол между наклонной \(AB\) и плоскостью α .
Если \(AD > AB\), то \(DC > BC\).
Если из данной точки к данной плоскости провести несколько наклонных, то большей наклонной соответствует большая проекция.
∢ \(DAB\) — угол между наклонными;
∢ \(DCB\) — угол между проекциями.
Отрезок \(DB\) — расстояние между основаниями наклонных.
Перпендикулярные плоскости, условие перпендикулярности плоскостей
Данная статья посвящена перпендикулярным плоскостям. Будут даны определения, обозначения вместе с примерами. Будет сформулирован признак перпендикулярности плоскостей и условие, при котором он выполним. Будут рассмотрены решения подобных задач на примерах.
Перпендикулярные прямая и плоскость, признак и условия перпендикулярности прямой и плоскости
Статья раскрывает понятие о перпендикулярности прямой и плоскости, дается определение прямой, плоскости, графически иллюстрировано и показано обозначение перпендикулярных прямой и плоскости. Сформулируем признак перпендикулярности прямой с плоскостью. Рассмотрим условия, при которых прямая и плоскость будут перпендикулярны с заданными уравнениями в плоскости и трехмерном пространстве. Все будет показано на примерах.
Должен ли отрезок перпендикулярный плоскости обязательно пересекать эту плоскость в кубе
У вас уже есть абонемент? Войти
У вас уже есть абонемент? Войти
Данный урок поможет получить представление о теме «Многогранники. Куб». На этом занятии мы научимся решать задачи на нахождение длин в кубе, в частности, расстояния между скрещивающимися прямыми.
Перпендикулярные плоскости – основные сведения
При наличии угла между пересекающимися прямыми можно говорить об определении перпендикулярных плоскостей.
При условии, что угол между перпендикулярными прямыми равен 90 градусов, их называют перпендикулярными.
Обозначение перпендикулярности принято писать знаком « ⊥ ». Если в условии дано, что плоскости α и β перпендикулярные, тогда запись принимает вид α ⊥ β . На рисунке ниже показано подробно.
Когда в улови дано, что плоскость α и β перпендикулярны, это значит, что α перпендикулярна β и наоборот. Такие плоскости называют взаимно перпендикулярными. Например, стена и потолок в комнате являются взаимно перпендикулярными, так как при пересечении дают прямой угол.
Урок 9. Признак перпендикулярности прямой и плоскости
Лемма о перпендикулярности двух прямых к третьей прямой: если одна из двух параллельных прямых перпендикулярная к третьей прямой, то и другая прямая перпендикулярна к этой прямой.
Теорема о параллельных прямых, перпендикулярных плоскости: если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.
Признак перпендикулярности прямой и плоскости: если прямая перпендикулярная к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.
Обязательная литература:
Атанасян Л. С., Бутузов В. Ф. Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.
Дополнительная литература:
Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения
Для того чтобы проверить перпендикулярность прямой к плоскости достаточно проверить перпендикулярность лишь к двум пересекающимся прямым, лежащим в этой плоскости.
Для доказательства рассмотрим прямую a, перпендикулярная к прямым p и q, лежащим в плоскости α и пересекающимся в точке О (рис. 1).
Сначала рассмотрим случай, когда прямая a проходит через точку О (рис. 2). Проведем через точку О прямую l, параллельную прямой m. Если m проходит через точку О, то в качестве l возьмем саму m.
Отметим на прямой a точки A и B так, чтобы точка O была серединой отрезка AB. Затем проведем в плоскости α прямую, пересекающую прямые p, q и l соответственно в точках P, Q и L.
Так как отрезок AO равен OB и прямая a перпендикулярна к прямым p и q, то p и q являются серединными перпендикулярами к отрезку AB. Поэтому отрезок AP равен BP и AQ равен BQ. Следовательно, треугольник APQ равен треугольнику BPQ по трем сторонам. Отсюда получаем, что угол APQ равен углу BPQ.
Треугольники APL и BPL равны по двум сторонам и углу между ними, так как отрезок AP равен BP, PL – общая сторона и угол APL равен углу BPL. Значит, отрезок AL равен BL. Значит, треугольник ABL – равнобедренный, а его медиана LO является и высотой, т.е. l перпендикулярна прямой a.
По лемме о перпендикулярности двух прямых к третьей прямой m будет перпендикулярна прямой a. Поэтому a перпендикулярна к любой прямой m плоскости α.
Теперь рассмотрим случай, когда прямая а не проходит через точку O (рис. 3). Проведем через точку O прямую a1, параллельную a. По лемме о перпендикулярности двух прямых к третьей, получим, что прямая a1 перпендикулярна прямым p и q. Поэтому по доказанному в первом случае a1 перпендикулярна плоскости α.
По теореме о параллельных прямых, перпендикулярных плоскости a перпендикулярна к плоскости α.
Теорема доказана.
Примеры и разбор решения заданий тренировочного модуля
Пример 1. Докажем, что прямые CA1 и BD, проходящие через вершины куба ABCDA1B1C1D1, перпендикулярны (рис. 4).
Рассмотрим плоскость ACC1 и прямую BD. Так как прямая BD перпендикулярна прямым AA1 и AC, то по признаку перпендикулярности прямой и плоскости, прямая BD перпендикулярна ACC1.
Следовательно, прямая BD перпендикулярна любой прямой в ACC1. В частности, прямая BD перпендикулярна прямой CA1. Что и требовалось доказать.
Тестовый вопрос №5. Верно ли, что если прямая перпендикулярна каким-нибудь двум прямым плоскости, то она перпендикулярна этой плоскости?
Решение. Воспользуемся признаком перпендикулярности прямой и плоскости: если прямая перпендикулярная к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости. В нем сказано, что прямые в плоскости должны пересекаться. В условии подобного не сказано, поэтому утверждение неверно.
Тестовый вопрос №7. Треугольник АВС – равносторонний, CD – медиана, MD перпендикулярно плоскости ABC. AB = 2√3, MD = 4. Найти MC.
Решение. Рассмотрим треугольник ABC. Он равносторонний. Это означает, что его медиана так же является высотой и биссектрисой. Рассмотрим треугольник ADC. Он прямоугольный, т.к. DC медиана и высота. Сторона AD равна √3. По теореме Пифагора вычислим длину стороны DC: .
Перпендикулярность плоскостей – признак и условие перпендикулярности
На практике можно встретить задания, где необходимо определить перпендикулярность заданных плоскостей. Для начала нужно определить угол между ними. Если он равен 90 градусам, тогда они считаются перпендикулярными из определения.
Для доказательства перпендикулярности двух плоскостей применяют признак перпендикулярности двух плоскостей. Формулировка содержит понятия перпендикулярная прямая и плоскость. Напишем точное определение признака перпендикулярности в виде теоремы.
Если одна из двух заданных плоскостей пересекает прямую, перпендикулярную другой плоскости, то заданные плоскости перпендикулярны.
Доказательство имеется в учебнике по геометрии за 10 - 11 класс, где есть подробное описание. Из признака следует, что, если плоскость перпендикулярна линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей.
Существует необходимое и достаточное условия для доказательства. Рассмотрим их для перпендикулярности двух заданных плоскостей, которое применяется в качестве проверки их перпендикулярности, находящихся в прямоугольной системе координат трехмерного пространства. Чтобы доказательство имело силу, необходимо применить определение нормального вектора плоскости, который способствует доказать необходимое и достаточное условие перпендикулярности плоскостей.
Для того, чтобы перпендикулярность пересекающихся плоскостей была явной, необходимо и достаточно, чтобы нормальные векторы заданных плоскостей пересекались под прямым углом.
ДоказательствоПусть в трехмерном пространстве задана прямоугольная система координат. Если имеем n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) , являющимися нормальными векторами заданных плоскостей α и β , то необходимым и достаточным условием перпендикулярности векторов n 1 → и n 2 → примет вид
n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0
Отсюда получаем, что n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) - нормальные векторы заданных плоскостей, а для действительности перпендикулярности α и β необходимо и достаточно, чтобы скалярное произведение векторов n 1 → и n 2 → было равным нулю, а значит, принимало вид n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0 .
Рассмотрим подробнее на примерах.
Нужна помощь преподавателя? Опиши задание — и наши эксперты тебе помогут! Описать заданиеОпределить перпендикулярность плоскостей, заданных в прямоугольной системе координат O x y z трехмерно пространства, заданного уравнениями x - 3 y - 4 = 0 и x 2 3 + y - 2 + z 4 5 = 1 ?
Для нахождения ответа на вопрос о перпендикулярности для начал необходимо найти координаты нормальных векторов заданных плоскостей, после чего можно будет выполнить проверку на перпендикулярность.
x - 3 y - 4 = 0 является общим уравнением плоскости, из которого можно сразу преобразовать координаты нормального вектора, равные n 1 → = ( 1 , - 3 , 0 ) .
Для определения координаты нормального вектора плоскости x 2 3 + y - 2 + z 4 5 = 1 перейдем от уравнения плоскости в отрезках к общему.
x 2 3 + y - 2 + z 4 5 ⇔ 3 2 x - 1 2 y + 5 4 z - 1 = 0
Тогда n 2 → = 3 2 , - 1 2 , 5 4 - это координаты нормального вектора плоскости x 2 3 + y - 2 + z 4 5 = 1 .
Перейдем к вычислению скалярного произведения векторов n 1 → = ( 1 , - 3 , 0 ) и n 2 → = 3 2 , - 1 2 , 5 4 .
Получим, что n 1 → , n 2 → = 1 · 3 2 + ( - 3 ) · - 1 2 + 0 · 5 4 = 3 .
Видим, что оно не равно нулю, значит, что заданные векторы не перпендикулярны. Отсюда следует, что плоскости также не перпендикулярны. Условие не выполнено.
Ответ: плоскости не перпендикулярны.
Прямоугольная система координат O x y z имеет четыре точки с координатами A - 15 4 , - 7 8 , 1 , B 17 8 , 5 16 , 0 , C 0 , 0 , 3 7 , D - 1 , 0 , 0 . Проверить, перпендикулярны ли плоскости А В С и A B D .
Для начала необходимо рассчитать скалярное произведение векторов данных плоскостей. Если оно равно нулю, только в этом случае можно считать, что они перпендикулярны. Находим координаты нормальных векторов n 1 → и n 2 → плоскостей А В С и A B D .
Из заданных координат точек вычислим координаты векторов A B → , A C → , A D → . Получаем, что:
A B → = 47 8 , 19 16 , - 1 , A C → = 15 4 , 7 8 , - 4 7 , A D → = 11 4 , 7 8 , - 1 .
Нормальный вектор плоскости А В С является векторным произведением векторов A B → и A C → , а для A B D векторное произведение A B → и A D → . Отсюда получим, что
n 1 → = A B → × A C → = i → j → k → 47 8 19 16 - 1 15 4 7 8 - 4 7 = 11 56 · i → - 11 28 · j → + 11 16 · k → ⇔ n 1 → = 11 56 , - 11 28 , 11 16 n 2 → = A B → × A D → = i → j → k → 47 8 19 16 - 1 11 4 7 8 - 1 = - 5 16 · i → + 25 8 · j → + 15 8 · k → ⇔ n 2 → = - 5 16 , 25 8 , 15 8
Приступим к нахождению скалярного произведения n 1 → = 11 56 , - 11 28 , 11 16 и n 2 → = - 5 16 , 25 8 , 15 8 .
Получим: n 1 → , n 2 → = 11 56 · - 5 16 + - 11 28 · 25 8 + 11 16 · 15 8 = 0 .
Если оно равно нулю, значит векторы плоскостей А В С и A B D перпендикулярны, тогда и сами плоскости перпендикулярны.
Ответ: плоскости перпендикулярны.
Можно было подойти к решению иначе и задействовать уравнения плоскостей А В С и A B D . После нахождения координат нормальных векторов данных плоскостей можно было бы проверить на выполнимость условие перпендикулярности нормальных векторов плоскостей.
Перпендикулярные прямая и плоскость – основные сведения
Определение 1Прямая перпендикулярна к плоскости, когда она перпендикулярна к любой прямой, лежащей в этой плоскости.
Верно то, что и плоскость перпендикулярна к прямой, как и прямая к плоскости.
Перпендикулярность обозначается « ⊥ ». Если в условии задано, что прямая с перпендикулярна плоскости γ , тогда запись имеет вид с ⊥ γ .
Например, если прямая перпендикулярна к плоскости, тогда возможно провести только одну прямую, благодаря которой две смежных стены комнаты пересекутся. Прямая считается перпендикулярной к плоскости потолка. Канат, расположенный в спортзале рассматривается в качестве отрезка прямой, который перпендикулярен плоскости, в данном случае полу.
При наличии перпендикулярной прямой к плоскости, угол между прямой и плоскостью считается прямым, то есть равен 90 градусов.
Урок 10. Перпендикуляр и наклонные
Определение: углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.
Основная литература:
Атанасян Л. С., Бутузов В. Ф. Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.
Дополнительная литература:
Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения
Рассмотрим плоскость α и точку А, не лежащую в этой плоскости (рис. 1). Проведем через точку А прямую, перпендикулярную к плоскости α, и обозначим буквой Н точку пересечения этой прямой с плоскостью α. Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α, а точка Н — основанием перпендикуляра. Отметим в плоскости α какую-нибудь точку М, отличную от Н, и проведем отрезок AM. Он называется наклонной, проведенной из точки А к плоскости α, а точка М – основанием наклонной. Отрезок НМ называется проекцией наклонной на плоскость α.
Рассмотрим прямоугольный треугольник АМН. Сторона АН — катет, а сторона AM — гипотенуза, поэтому АН < AM. Поэтому перпендикуляр, проведенный из данной точки к плоскости, меньше любой наклонной, проведенной из той же точки к этой плоскости.
Следовательно, из всех расстояний от точки А до различных точек плоскости α наименьшим является расстояние до точки Н. Это расстояние, т. е. длина перпендикуляра, проведенного из точки А к плоскости α, называется расстоянием от точки А до плоскости α.
Стоит отметить, что в случае двух параллельных плоскостей, расстоянием между ними будет расстояние от произвольной точки одной плоскости до другой плоскости. Например, все точки потолка находятся на одинаковом расстоянии от пола. Если же прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости. В этом случае расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью. Например, все точки прямой b равноудалены от потолка комнаты.
Если мы имеем дело со скрещивающимися прямыми, то расстоянием между ними будет расстояние между одной из этих прямых и плоскостью, проходящей через другую прямую параллельно первой.
Сформулируем теорему о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.
На рисунке 2: АН — перпендикуляр к плоскости α, AM — наклонная, а — прямая, проведенная в плоскости α через точку М перпендикулярно к проекции наклонной НМ. Докажем, что прямая а перпендикулярна наклонной AM.
Рассмотрим плоскость АМН. Прямая а перпендикулярна к НМ по условию. Так как прямая а, лежит в плоскости α, а эта плоскость перпендикулярна отрезку AH, то прямая а перпендикулярна к этой плоскости. Отсюда следует, что прямая а перпендикулярна к любой прямой, лежащей в плоскости АМН, в частности прямая а перпендикулярна отрезку АМ. Теорема доказана.
Эта теорема называется теоремой о трех перпендикулярах, так как в ней говорится о связи между тремя перпендикулярами АН, НМ и AM.
Справедлива также обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.
Введем теперь понятие проекции произвольной фигуры на плоскость. Проекцией точки на плоскость называется основание перпендикуляра, проведенного из этой точки к плоскости, если точка не лежит в плоскости, и сама точка, если она лежит в плоскости.
Обозначим буквой F какую-нибудь фигуру в пространстве. Если мы построим проекции всех точек этой фигуры на данную плоскость, то получим фигуру F1, которая называется проекцией фигуры F на данную плоскость (рис. 3).
Докажем теперь, что проекцией прямой на плоскость, не перпендикулярную к этой прямой, является прямая (рис. 4).
Данную плоскость обозначим буквой α. Произвольную прямую, не перпендикулярную к плоскости, обозначим буквой а. Из какой-нибудь точки М прямой а проведем перпендикуляр МН к плоскости α и рассмотрим плоскость β, проходящую через прямую a и перпендикуляр МН. Плоскости α и β пересекаются по некоторой прямой а1.
Докажем, что эта прямая и является проекцией прямой а на плоскость α. В самом деле, возьмем произвольную точку М1 прямой а и проведем в плоскости β прямую М1Н1, параллельную прямой МН.
Так как отрезок MH перпендикуляр к плоскости α и отрезок MH параллелен М1Н1, то отрезок М1Н1 тоже перпендикулярен плоскости α.
Этим мы доказали, что проекция произвольной точки прямой а лежит на прямой а1.
Аналогично доказывается, что любая точка прямой а1 является проекцией некоторой точки прямой а. Следовательно, прямая а1 — проекция прямой а на плоскость α. Что и требовалось доказать.
Теперь введем понятие угла между прямой и плоскостью.
Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.
Примеры и разбор решения заданий тренировочного модуля
Пример 1. Докажем, что угол между φ0 между данной прямой AM и плоскостью α является наименьшим из всех углов φ, которые данная прямая образует с прямыми, проведенными в плоскости α через точку А.
Обозначим буквой Н основание перпендикуляра (рис. 5), проведенного из точки М к плоскости α.
Рассмотрим произвольную прямую р в плоскости α, проходящую через точку А и отличную от прямой АН.
Угол между прямыми AM и р обозначим через φ.
Докажем, что φ больше чем φ0.
Из точки М проведем перпендикуляр MN к прямой р. Если точка N совпадает с точкой А, то φ равняется 90 градусам и поэтому φ больше чем φ 0. Рассмотрим случай, когда точки А и N не совпадают. Отрезок AM — общая гипотенуза прямоугольных
треугольников ANM и АНМ, поэтому
sinφ=MN/AM
Так как наклонная MN больше, чем перпендикуляр МН, то синус угла φ больше, чем синус угла φ0. Поэтому угол φ больше, чем угол φ0. Что и требовалось доказать.
Тестовый вопрос №7. Прямая AM перпендикулярна плоскости равностороннего треугольника ABC, точка H середина стороны BC. Найдите угол между прямой MH и плоскостью ABC, если AM = a, HB = a.
Решение. Искомый угол – MHA.
Рассмотрим треугольник ABC. Он равносторонний. Это означает, что его медиана так же является высотой и биссектрисой. Так как HB = a, следовательно, любая сторона треугольника имеет длину 2a. Рассмотрим треугольник AHB. Он прямоугольный, т.к. AH медиана и высота. По теореме Пифагора вычислим длину стороны AH: .
Далее рассмотрим треугольник MHA, он прямоугольный, т.к. MA перпендикулярна плоскости ABC. Зная это мы можем выразить тангенс искомого угла: .. Отсюда делаем вывод, что искомый угол равен 30 градусов.
Тестовый вопрос №8. Из точки O к плоскости α проведена наклонная, длина которой равна 17 см, проекция наклонной равна 15 см. На каком расстоянии от плоскости находится точка O?
Решение. Нарисуем рисунок. OH – перпендикуляр, OM – наклонная, длина которой 17 см, MH – проекция наклонной, длина которой 15 см.
Урок 11. Перпендикулярность плоскостей
Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей в виде прямой а, не принадлежащими одной плоскости. Перпендикуляры к ребру двугранного угла образуют линейный угол двугранного угла. Градусной мерой двугранного угла называется градусная мера его линейного угла.
Если угол между пересекающимися плоскостями равен 90 градусом, то плоскости перпендикулярны.
Признак перпендикулярности плоскостей: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.
Следствие из признака перпендикулярности плоскостей: Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
Прямоугольный параллелепипед – фигура, у которой все боковые ребра перпендикулярны основанию.
Основная литература:
Атанасян Л.С., Бутузов В.Ф. Кадомцев С.Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.
Дополнительная литература:
Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения
Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей в виде прямой а, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. Прямая а, которая является общей границей полуплоскостей, называется ребром двугранного угла (рис. 1а и 1б).
Двугранный угол с ребром CD, на разных гранях которого отмечены точки A и B называют двугранным углом CABD.
Перпендикуляры к ребру AO и BO образуют линейный угол двугранного угла AOB (рис. 1в). Так как луч ОА перпендикулярен прямой CD и луч OB перпендикулярен прямой CD, то плоскость АОВ перпендикулярна к прямой CD. Таким образом, плоскость линейного угла перпендикулярна к ребру двугранного угла. Двугранный угол имеет бесконечное множество линейных углов
Градусной мерой двугранного угла называется градусная мера его линейного угла. Так же как и плоские углы, двугранные углы могут быть прямыми, острыми и тупыми.
Все линейные углы двугранного угла равны друг другу.
Рассмотрим два линейных угла АОВ и А1О1В1 (рис. 1г). Лучи ОА и О1А1, лежат в одной грани и перпендикулярны к прямой ОО1, поэтому они сонаправлены. Точно так же сонаправлены лучи OB и O1B1. Поэтому углы АОВ и А1О1В1 равны как углы с сонаправленными сторонами.
Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром.
Если один из этих двугранных углов равен фи, то другие три угла равны соответственно 180 градусов минус фи, фи и 180 градусов минус фи (рис. 2 а). В частности, если один из углов прямой, то и остальные три угла прямые. Если угол между пересекающимися плоскостями равен 90 градусом, будем называть такие плоскости перпендикулярными (рис. 2б).
Для доказательства теоремы рассмотрим плоскости альфа и бетта такие (рис. 3), что плоскость альфа проходит через прямую АВ, перпендикулярную к плоскости бетта и пересекающуюся с ней в точке А. Докажем, что плоскости альфа и бетта перпендикулярны. Плоскости альфа и бетта пересекаются по некоторой прямой АС. При этом прямая АВ перпендикулярна прямой АС, так как по условию прямая АВ перпендикулярна плоскости бетта, это означает, что прямая АВ перпендикулярна к любой прямой, лежащей в плоскости бетта.
Проведем в плоскости бетта прямую AD, перпендикулярную к прямой АС. Тогда угол BAD — линейный угол двугранного угла, образованного при пересечении плоскостей альфа и бетта. Но угол BAD равен 90 градусов так как прямая АВ перпендикулярна плоскости бетта. Следовательно, угол между плоскостями альфа и бетта равен 90 градусов. Что и требовалось доказать.
Из этой теоремы вытекает важное следствие:
Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
На рисунке 4 представлен прямоугольный параллелепипед. У этой фигуры все боковые ребра перпендикулярны основанию.
Его основаниями служат прямоугольники ABCD и A1B1C1D1, а боковые ребра АА1,BB1,CC1 и DD1 перпендикулярны к основаниям. Отсюда следует, что ребро АА1 перпендикулярно к ребру АВ, т. е. боковая грань АА1В1В является прямоугольником. То же самое можно сказать и об остальных боковых гранях.
Таким образом, прямоугольный параллелепипед обладает следующими свойствами:
1) В прямоугольном параллелепипеде все шесть граней — прямоугольники.
2) Все двугранные углы прямоугольного параллелепипеда — прямые.
3) Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Измерениями прямоугольного параллелепипеда называются длины трех ребер, имеющих общую вершину.
Докажем последнее свойство.
Так как ребро СС1 перпендикулярно к основанию ABCD, то угол АСС1, прямой. Из прямоугольного треугольника АСС1, по теореме Пифагора получаем
Но АС — диагональ прямоугольника ABCD, поэтому АС 2 равно АВ 2 + АD 2 . Кроме того, ребро СС1 равно ребру АА1. Следовательно, AC1 равно АВ 2 + AD 2 + АА1 2 . Что и требовалось доказать.
Следствием из этого свойства является то, что диагонали прямоугольного параллелепипеда равны.
Стоит отметить, что если у прямоугольного параллелепипеда все три измерения равны, то он называется, а все его грани являются равными друг другу квадратами.
Примеры и разбор решения заданий тренировочного модуля
Пример 1. В прямоугольном параллелепипеде ABCDA1B1C1D1 (рис. 5) боковая грань DD1C1C – квадрат, DC равно 4 см, BD1 равно 6 см. Найдите BC и докажите, что плоскости BCD1 и DC1 B1 взаимно перпендикулярны.
Сначала найдем BC. Воспользуемся тем свойством прямоугольного параллелепипеда, что квадрат его диагонали равен сумме квадратов трех его измерений.
Тогда диагональ BD1 в квадрате равна AD в квадрате плюс DD1 в квадрате плюс DC в квадрате. BD1 – известно из условия, DD1 и DC – стороны квадрата и тоже известны из условия, тогда отсюда мы можем выразить ребро AD, которое ребру BC.Отсюда находим, что BC равно 2 сантиметрам.
Для доказательства перпендикулярности плоскостей BCD1 и DC1 B1 воспользуемся признаком перпендикулярности плоскостей. Этот признак звучит следующим образом: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.
Заметим, что плоскость BCD1 проходит через диагональ грани DD1 C1C – CD1. Эта диагональ перпендикулярна плоскости DC1 B1 в соответствии с признаком перпендикулярности прямой и плоскости, так как CD1 перпендикулярна второй диагонали квадрата – C1D и перпендикулярна ребру прямоугольного параллелепипеда C1 B1. Что и требовалось доказать.
Тестовый вопрос №2. В прямом двугранном угле дана точка A. Расстояния от точки A до граней угла: AA1=6 см и AB1=8 см. Определите расстояние от точки A до ребра двухгранного угла.
Отрезки AA1 и AB1 перпендикулярны граням двугранного угла, поэтому AA1BB1 – прямоугольник. Искомое расстояние – диагональ этого прямоугольника, которую найдем с помощью теоремы Пифагора: сантиметров.
Тестовый вопрос №10. В прямоугольном параллелепипеде ABCDA1B1C1D1 длины рёбер: AB = 2, BC=3, AA1 = 4. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C1.
Решение. Нарисуем рисунок.
В рассматриваемом прямоугольном параллелепипеде проведем отрезок BC1. Затем построим плоскость на прямых BC1 и AB. Так как плоскости прямоугольного параллелепипеда AA1D1D и BB1C1C параллельны, поэтому искомым сечением является прямоугольник ABC1D1.
Нам известны отрезки AA1 и BC, из них по теореме Пифагора вычислим длину отрезка BC1: .
Обязательно пересекаются ли перпендикулярные отрезки (не прямые)?
Обязательно пересекаются ли перпендикулярные отрезки (не прямые)?
Лучший ответ
Прямые пересекаются в точке ( предположим, что речь о плоскости )
Если данная точка принадлежит обоим отрезкам ( частям соответственных прямых ) , то отрезки пересекаются (с) капитан очевидность
Остальные ответы
нет конечно
Владислав ТатаркинУченик (175) 1 год назад
А можно ли считать такое положение отрезков перпендикулярным? - Я про это
Scarabey Искусственный Интеллект (109328) Владислав Татаркин, так а определение что говорит по этому поводу?
Читайте также: