Сталью называется сплав железа с углеродом в котором углерода содержится
Сталь - деформируемый (ковкий) сплав железа с углеродом (до 2,14%) и другими элементами. Получают, главным образом, из смеси чугуна со стальным ломом в кислородных конвертерах, мартеновских печах и электропечах. Сплав железа с углеродом, содержащий более 2,14% углерода, называют чугуном.
Классификация сталей и сплавов производится:
· по химическому составу
· по структурному составу
· по качеству (по способу производства и содержанию вредных примесей
· по степени раскисления и характеру затвердевания металла в изложнице
· по назначению
По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы:
· малоуглеродистые - менее 0,3% С;
· среднеуглеродистые - 0,3-0,7% С;
· высокоуглеродистые - более 0,7 %С.
Для улучшения технологических свойств стали легируют. Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, Al, B, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.
В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:
· низколегированные - менее 2,5%;
· среднелегированные - 2,5-10%;
· высоколегированные - более 10%.
Легированные стали и сплавы делятся также на классы по структурному составу:
· в отожженном состоянии - доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный;
· в нормализованном состоянии - перлитный, мартенситный и аустенитный.
К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному - с более высоким и к аустенитному - с высоким содержанием легирующих элементов.
Производство стали. Кислородно-конвертерный способ
Первое использование кислородно-конвертерного способа приходится на пятидесятые годы двадцатого столетия. В процессе производства стали, чугун продувают в конвертере чистым кислородом. При этом, процесс происходит без затраты топлива. Для того, чтобы переработать 1 тонну чугуна в сталь требуется около 350 кубометров воздуха. Стоит отметить, что кислородно-конвертерный способ получения стали является наиболее актуальным на сегодняшний день. При этом, процесс не ограничивается на одном способе вдувания кислорода. Различают кислородно-конвертерный процесс с комбинированной, верхней и нижней поддувкой. Конвертерный способ производства стали с комбинированной поддувкой является наиболее универсальным.
Для осуществления этого метода необходим конвертер. Подача кислорода осуществляется через водоохлаждаемую фурму под давлением. В данном случае, процесс окисления является наиболее значимым. Окисление чугуна происходит под воздействием дутья. В результате окисления выделяется тепло, что способствует снижению примесей и повышению температуры металла. далее происходит так называемое раскисление металла.
2. Железоуглеродистые сплавы
2.1 Структурные составляющие железоуглеродистых сплавов
В железоуглеродистые сплавы входят различные структурные составляющие, свойства которых обусловливают свойства стали и чугуна.
Феррит и цементит являются основными структурными составляющими железоуглеродистых сплавов. Они могут располагаться, например, в структуре стали каждый в отдельности или в виде равномерной механической смеси, которая называется перлитом. Такое название эта смесь получила потому, что шлиф ее при травлении имеет перламутровый отлив. Так как перлит образуется в результате процессов вторичной кристаллизации, его называют эвтектоидом (в отличие от эвтектики). Образование перлита происходит при температуре 727 °С. В нем содержится 0,8% углерода.
Если железоуглеродистые сплавы нагреть до определенных температур, произойдет аллотропическое превращение железа и образуется структурная составляющая, которая называется аустенитом.
2.2 Диаграмма состоянияжелезоуглеродистых сплавов
Рис. 10. Диаграмма состояния «железо — углерод»
Диаграмма условно разделена на две части: диаграмму углеродистых сталей и диаграмму белых чугунов.
На диаграмме (рис. 10) показано состояние сплавов при первичной и вторичной кристаллизации.
Процессы первичной кристаллизации характеризуются кривыми ACD и AECF.
1600°С). Точка Е соответствует максимальному количеству углерода, которое может быть растворено в аустените при высоких температурах. Точка С указывает на состав эвтектики, она соответствует содержанию в сплаве 4,3% углерода. Температура образования эвтектики 1147°С. Линия ECF называется эвтектической, так как в любой ее точке происходит образование эвтектики (ледебурита).
В результате первичной кристаллизации сталь получает структуру аустенита, характеризующуюся хорошей пластичностью и вязкостью. Поэтому такая сталь хорошо поддается обработке давлением при высоких температурах. Белые чугуны имеют в своем составе хрупкий и твердый ледебурит, который исключает возможность их обработки давлением даже при высоких температурах. Эта разница в технологических свойствах железоуглеродистых сплавов делает содержание углерода 2,14% той границей между сталью и белыми чугунами, за которой при первичной кристаллизации появляется ледебурит.
Процессы вторичной кристаллизации стали. Если бы железо не испытывало структурных превращений в твердом состоянии, то диаграмма состояния железоуглеродистых сплавов при всех температурах ниже !147°С (вплоть до комнатной) была бы одинаковой (рис. 10, линия AECF). Однако железо подвержено аллотропическим превращениям, поэтому эти сплавы не сохраняют своей первичной структуры.
Рассмотрим процессы вторичной кристаллизации сталей. Для наглядности выделим левую часть диаграммы (рис. 10), охватывающую процессы вторичной кристаллизации стали (рис. 11).
Рис. 11. Область сталей диаграммы состояния «железо — углерод»
В чем заключаются структурные превращения, которые происходят со сталью в твердом состоянии? Точка G соответствует превращениям, происходящим в чистом железе при 911°С (рис. 11).
Если сталь содержит 0,8% углерода, ее вторичная кристаллизация будет протекать при постоянной температуре (727°С) и сопровождаться только одним процессом- образованием перлита.
Как происходят процессы вторичной кристаллизации стали, содержащей 1,2% углерода? Сталь с таким количеством углерода сохраняет первичную структуру аустенита при охлаждении до 870°С. При более низкой температуре аустенит не способен растворить 1,2% углерода, поэтому при дальнейшем охлаждении сплава из кристаллической решетки аустенита будет выделяться избыточный углерод в виде цементита. Так как этот цементит образуется в результате вторичной кристаллизации, его называют вторичным цементитом и обозначают Fe3Cn. Вследствие выделения цементита содержание углерода в оставшемся аустените будет непрерывно снижаться и при температуре 727°С достигнет 0,8%. При этой температуре аустенит превратится в перлит. На этом процесс вторичной кристаллизации закончится.
Таким образом, рассматриваемая сталь в интервале температур от 870 до 727°С имеет структуру аустенита и вторичного цементита, а при температурах ниже 727°С состоит из вторичного цементита и перлита. Аналогичные превращения в твердом состоянии испытывают все заэвтектоидные стали, т. е. стали, содержащие более 0,8% углерода, разница между ними лишь в температурах начала выделения вторичного цементита.
Железоуглеродистые сплавы
Чистые металлы относительно редко применяют в машиностроении, так как не обеспечивают необходимого комплекса механических и технологических свойств изготовляемых из них деталей. Широко используют сплавы, состоящие из двух и более элементов (из двух металлов, например меди и цинка, или из металла и неметалла, например железа и углерода).
Элементы, входящие в сплав, называют компонентами.
Сплавы получают сплавлением компонентов, спеканием, электролизом и возгонкой. Компоненты, входящие в сплав, в жидком состоянии почти всегда растворяются друг в друге, образуя жидкий раствор. Атомы такого раствора равномерно перемешаны друг с другом. Свойства сплавов зависят главным образом от взаимодействия компонентов при затвердевании. При затвердевании сплавов образуется твердый раствор, химическое соединение или механическая смесь.
Свойства сплавов, образующих твердые растворы, изменяются плавно и отличаются от свойств компонентов, из которых они стоят. Они отличаются ценными свойствами. Они тверже и прочнее, чем входящие в них компоненты, обладают хорошей пластичностью, высоким электросопротивлением, не изменяющимся при изменении температуры, повышенным сопротивлением к коррозии. Благодаря высокой пластичности такие сплавы хорошо обрабатываются давлением.
Химические соединения обладают очень высокой твердостью и хорошим электросопротивлением. Иногда их твердость в 10 раз превышает твердость чистых компонентов. Так, например, железо с углеродом образует химическое соединение Fe3C, твердость которого в 10 раз выше твердости железа. Химические соединения вольфрама и титана с углеродом (карбиды), отличающиеся очень высокой твердостью, используются для изготовления режущих инструментов. В отличие от твердых растворов химические соединения характеризуются высокой хрупкостью, для обработки давлением они непригодны.
Механические смеси имеют хорошие литейные свойства. Особенно это относится к эвтектическим сплавам, которые обладают большей жидкотекучестью и меньшей температурой плавления, чем составляющие их компоненты.
Знание строения сплавов облегчает их выбор при изготовлении деталей машин и разработке технологических процессов. При изучении процессов, происходящих в металлах и сплавах в случае изменения их температуры и состава, пользуются такими понятиями, как компонент, система, фаза.
Сталь
Стали с очень высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.
Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы, кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью [2] .
Сталь (сплав железа с углеродом)
Историческая справка. С. как материал, используемый человеком, имеет многовековую историю. Наиболее древний способ получения С. в тестообразном состоянии ‒ сыродутный процесс , в основе которого лежало восстановление железа из руд древесным углём в горнах (позднее в небольших шахтных печах). Для получения литой С. древние мастера применяли тигельную плавку ‒ расплавление мелких кусков С. и чугуна в огнеупорных тиглях. Тигельная С. характеризовалась весьма высоким качеством, но процесс был дорогим и малопроизводительным. Таким способом изготовляли, в частности, булат и его разновидность ‒ дамасскую сталь . Тигельный процесс просуществовал до начала 20 в. и был полностью вытеснен электроплавкой. В 14 в. возник кричный передел , заключавшийся в рафинировании предварительно полученного чугуна в т. н. кричном горне (двухстадийный процесс с получением чугуна и последующим переделом его в С. является основой и современных схем производства С.). В конце 18 в. начало применяться пудлингование , при котором, как и при кричном переделе, исходным материалом был чугун, а продуктом ‒ тестообразный металл ( крица ) качество металла при этом было выше, а сам процесс характеризовался более высокой производительностью. Пудлингование сыграло важную роль в развитии техники, однако обеспечить всё возраставшие потребности общества в С. не могло. Лишь с появлением во 2-й половине 19 в. бессемеровского процесса и мартеновского процесса (см. Мартеновское производство ), а затем и томасовского процесса стало возможным массовое производство литой С. В конце 19 в. начала применяться выплавка С. в электрических печах (см. Электросталеплавильное производство ). До середины 20 в. главенствующее положение среди способов производства С. занимал мартеновский процесс, на долю которого приходилось около 80% выплавляемой в мире С. В 50-х гг. был внедрён кислородно-конвертерный процесс , причём в последующие годы его роль резко возросла. Наряду с указанными способами массового производства С. развиваются более дорогие и менее производительные способы, позволяющие получать особо чистый металл высокого качества: вакуумная дуговая плавка (см. Дуговая вакуумная печь ), вакуумная индукционная плавка, электрошлаковый переплав , электроннолучевая плавка , плазменная плавка (см. Плазменная металлургия ).
Структура и свойства стали. К С. как важнейшему материалу современной техники предъявляются разнообразные требования, что обусловливает большое число марок С., отличающихся по химическому составу, структуре, свойствам. Основной компонент С. ‒ железо. Свойственный железу полиморфизм , т. е. способность кристаллической решётки менять своё строение при нагреве и охлаждении, присущ и С. Для чистого железа известны 2 кристаллические решётки ‒ кубическая объёмноцентрированная (a-железо, при более высоких температурах d-железо) и кубическая гранецентрированная (g-железо). Температуры перехода одной модификации железа в другую (910 °С и 1400 °С) называются критическими точками. Углерод и др. компоненты и примеси С. меняют положение критических точек на температурной шкале. Взаимодействие углерода с модификациями железа приводит к образованию т. н. твёрдых растворов . Растворимость углерода в a-железе весьма мала; этот раствор называется ферритом . В g-железе, существующем при высоких температурах, растворяется практически весь углерод, содержащийся в С. (предел растворимости углерода в g-железе 2,01%); образующийся раствор называется аустенитом . Содержание углерода в С. всегда превышает его растворимость в a-железе; избыточный углерод образует с железом химическое соединение ‒ карбид железа Fe 3 C, или цементит . Т. о., при комнатной температуре структура С. состоит из частиц феррита и цементита, присутствующих либо в виде отдельных включений (т. н. структурно-свободных феррита и цементита), либо в виде тонкой механической смеси, называемой перлитом . Общие сведения о температурных и концентрационных границах существования фаз (феррита, цементита, перлита и аустенита) даёт диаграмма состояния сплавов Fe ‒ С (см. Железоуглеродистые сплавы ).
Для феррита характерны относительно низкие прочность и твёрдость, но высокие пластичность и ударная вязкость. Цементит хрупок, но весьма твёрд и прочен. Перлит обладает ценным сочетанием прочности, твёрдости, пластичности и вязкости. Соотношение между этими фазами в структуре С. определяется главным образом содержанием в ней углерода; различные свойства этих фаз и обусловливают многообразие свойств С. Так, С., содержащая
0,1% С (в её структуре преобладает феррит), характеризуется большой пластичностью; С. этого типа используется для изготовления тонких листов, из которых штампуют части автомобильных кузовов и др. деталей сложной формы. С., в которой содержится
0,6% С, имеет обычно перлитную структуру; обладая повышенной твёрдостью и прочностью при достаточной пластичности и вязкости, такая С. служит, например, материалом для ж.-д. рельсов, колёс, осей. Если С. содержит около 1% С, в её структуре наряду с перлитом присутствуют частицы структурно-свободного цементита; эта С. в закалённом виде имеет высокую твёрдость и применяется для изготовления инструмента. Диапазон свойств С. расширяется с помощью легирования , а также термической обработки , химико-термической обработки , термомеханической обработки металла. Так, при закалке С. образуется метастабильная фаза мартенсит ‒ пересыщенный твёрдый раствор углерода в a-железе, характеризующийся высокой твёрдостью, но и большой хрупкостью; сочетая закалку с отпуском , можно придать С. требуемое сочетание твёрдости и пластичности.
Классификация сталей. В современной металлургии С. выплавляют главным образом из чугуна и стального лома. По типу сталеплавильного агрегата (кислородный конвертер, мартеновская печь, электрическая дуговая печь) С. называется кислородно-конвертерной, мартеновской или электросталью. Кроме того, различают металл, выплавленный в основной или кислой (по характеру футеровки) печи; С. при этом называется соответственно основной или кислой (например, кислая мартеновская С.).
По химическому составу С. делятся на углеродистые и легированные. Углеродистая сталь наряду с Fe и С содержит Mn (0,1‒1,0%) и Si (до 0,4%), а также вредные примеси ‒ S и Р; эти элементы попадают в С. в связи с технологией её изготовления (главным образом из шихтовых материалов). В зависимости от содержания С различают низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25‒0,6% С) и высокоуглеродистую (более 0,6% С) С. В состав легированных сталей , помимо указанных компонентов, входят т. н. легирующие элементы (Cr, Ni, Mo, W, V, Ti, Nb, Zr, Со и др.), которые намеренно вводят в С. для улучшения её технологических и эксплуатационных характеристик или для придания ей особых свойств; легирующими элементами могут служить также Mn (при содержании более 1%) и Si (более 0,8%). По степени легирования (т. с. по суммарному содержанию легирующих элементов) различают низколегированные (менее 2,5%), среднелегированные (2,5‒10%) и высоколегированные (более 10%) С. Легированные С. часто называются по преобладающим в ней компонентам (например, вольфрамовая, высокохромистая, хромомолибденовая, хромомарганцевоникелевая, хромоникелемолибденованадиевая).
По назначению С. делят на следующие основные группы: конструкционные, инструментальные и С. с особыми свойствами. Конструкционные стали применяют для изготовления строительных конструкций, деталей машин и механизмов, судовых и вагонных корпусов, паровых котлов и др. изделий. Конструкционные С. могут быть как углеродистыми (до 0,7% С), так и легированными (основные легирующие элементы ‒ Cr и Ni). Название конструкционной С. может отражать её непосредственное назначение (котельная, клапанная, рессорно-пружинная, судостроительная, орудийная, снарядная, броневая и т.д.). Инструментальные стали служат для изготовления резцов, фрез, штампов, калибров и др. режущего, ударно-штампового и мерительного инструмента. С. этой группы также могут быть углеродистыми (обычно 0,8‒1,3% С) или легированными (главным образом Cr, Mn, Si, W, Mo, V). Среди инструментальных С. широкое распространение получила быстрорежущая сталь . К С. с особыми физическим и химическим свойствами относятся электротехнические стали , нержавеющие стали , кислотостойкие, окалиностойкие, жаропрочные, С. для постоянных магнитов и др. Для многих С. этой группы характерно низкое содержание углерода и высокая степень легирования.
По качеству С. обычно подразделяют на обыкновенные (рядовые), качественные, высококачественные и особо высококачественные. Различие между ними заключается в количестве вредных примесей (S и Р) и неметаллических включений . Так, в некоторых С. обыкновенного качества допускается содержание S до 0,055‒0,06% и Р до 0,05‒0,07% (исключение составляет автоматная сталь , содержащая до 0,3% S и до 0,16% Р), в качественных ‒ не более 0,035% каждого из этих элементов, в высококачественных ‒ не более 0,025%, в особо высококачественных ‒ менее 0,015% S. Сера снижает механические свойства С., является причиной красноломкости , т. е. хрупкости в горячем состоянии, фосфор усиливает хладноломкость ‒ хрупкость при пониженных температурах.
По характеру застывания металла в изложнице различают спокойную, полуспокойную и кипящую С. Поведение металла при кристаллизации обусловлено степенью его раскисленности: чем полнее удалён из С. кислород, тем спокойнее протекает процесс затвердевания; при разливке малораскисленной С. в изложнице происходит бурное выделение пузырьков окиси углерода ‒ С. как бы «кипит». Полуспокойная С. занимает промежуточное положение между спокойной и кипящей С. Каждый из этих видов металла имеет достоинства и недостатки; выбор технологии раскисления и разливки С. определяется её назначением и технико-экономическими показателями производства.
Маркировка сталей. Единой мировой системы маркировки С. не существует. В СССР проведена большая работа по унификации обозначений различных марок С., что нашло отражение в государственных стандартах и технических условиях. Марки углеродистой С. обыкновенного качества обозначаются буквами Ст и номером (Ст0, Ст1, Ст2 и т.д.). Качественные углеродистые С. маркируются двузначными числами, показывающими среднее содержание С в сотых долях процента: 05, 08, 10, 25, 40 и т.д. Спокойную С. иногда дополнительно обозначают буквами сп, полуспокойную ‒ пс, кипящую ‒ кп (например, СтЗсп, Ст5пс, 08кп). Буква Г в марке С. указывает на повышенное содержание Mn (например, 14Г, 18Г). Автоматные С. маркируются буквой А (А12, А30 и т.д.), углеродистые инструментальные С. ‒ буквой У (У8, У10, У12 и т.д. ‒ здесь цифры означают содержание С. в десятых долях процента).
Обозначение марки легированной С. состоит из букв, указывающих, какие компоненты входят в её состав, и цифр, характеризующих их среднее содержание. В СССР приняты единые условные обозначения химического состава С.: алюминий ‒ Ю, бор ‒ Р, ванадий ‒ Ф, вольфрам ‒ В, кобальт ‒ К, кремний ‒ С, марганец ‒ Г, медь ‒ Д, молибден ‒ М, никель ‒ Н, ниобий ‒ Б, титан ‒ Т, углерод ‒ У, фосфор ‒ П, хром ‒ Х, цирконий ‒ Ц. Первые цифры марки обозначают среднее содержание С (в сотых долях процента для конструкционных С. и в десятых долях процента для инструментальных и нержавеющих С.); затем буквой указан легирующий элемент и цифрами, следующими за буквой,‒ его среднее содержание. Например, С. марки 3Х13 содержит 0,3% С и 13% Cr, С. марки 2X17H2 ‒ 0,2% С, 17% Cr и 2% Ni. При содержании легирующего элемента менее 1,5% цифры за соответствующей буквой не ставятся: так, С. марки 12ХН3А содержит менее 1,5% Cr. Буква А в конце обозначения марки указывает на то, что С. является высококачественной, буква Ш ‒ особо высококачественной. Обозначение марки некоторых легированных С. включает букву, указывающую на назначение С. (например, ШХ9 ‒ шарикоподшипниковая С. с 0,9‒1,2% Cr; Э3 ‒ электротехническая С. с 3% Si). С., проходящие промышленные испытания, часто маркируют буквами ЭИ или ЭП (завод «Электросталь»), ДИ (завод «Днепроспецсталь») или ЗИ (Златоустовский завод) с соответствующим очередным номером (ЭИ268). См. также Металлургия , Сталеплавильное производство .
Лит.: Сталеплавильное производство. Справочник, под ред. А. М. Самарина, т. 1‒2, М., 1964; Меськин В. C., Основы легирования стали, 2 изд., М., 1964; Гудремон Э., Специальные стали, пер. с нем., 2 изд., т. 1‒2, М., 1966; Дреге В., Сталь как конструкционный материал, пер. с нем., М., 1967; Гуляев А. П., Чистая сталь, М., 1975.
Сталь в искусстве. В средние века славились арабское оружие и доспехи из С. с плоскими узорами и надписями, выполненными гравированием или насечкой . Эти приёмы декорировки оружейники средневековой Европы дополнили чеканкой , наводкой и полировкой. С 16 в. в отделке часов, научных приборов и инструментов появляется устойчивая к коррозии зеркальная полировка, использование которой послужило стимулом для выпуска бытовых изделий из С. В 18 ‒ начале 19 вв. эстетические свойства С. наиболее ярко раскрылись в изделиях мастеров Тульского оружейного завода (мебель, зеркала, самовары, каминные экраны и т.п.). Как вид народного творчества известна с середины 19 в. златоустовская гравюра на С. В советском искусстве С. нашла применение в облицовке интерьеров, а также в скульптуре (В. И. Мухина, «Рабочий и колхозница», см. илл. ).
Лит.: Тульские «златокузнецы». [Альбом], Л., 1974.
Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .
Сталь (сплав железа с углеродом)
Историческая справка. С. как материал, используемый человеком, имеет многовековую историю. Наиболее древний способ получения С. в тестообразном состоянии ‒ сыродутный процесс , в основе которого лежало восстановление железа из руд древесным углём в горнах (позднее в небольших шахтных печах). Для получения литой С. древние мастера применяли тигельную плавку ‒ расплавление мелких кусков С. и чугуна в огнеупорных тиглях. Тигельная С. характеризовалась весьма высоким качеством, но процесс был дорогим и малопроизводительным. Таким способом изготовляли, в частности, булат и его разновидность ‒ дамасскую сталь . Тигельный процесс просуществовал до начала 20 в. и был полностью вытеснен электроплавкой. В 14 в. возник кричный передел , заключавшийся в рафинировании предварительно полученного чугуна в т. н. кричном горне (двухстадийный процесс с получением чугуна и последующим переделом его в С. является основой и современных схем производства С.). В конце 18 в. начало применяться пудлингование , при котором, как и при кричном переделе, исходным материалом был чугун, а продуктом ‒ тестообразный металл ( крица ) качество металла при этом было выше, а сам процесс характеризовался более высокой производительностью. Пудлингование сыграло важную роль в развитии техники, однако обеспечить всё возраставшие потребности общества в С. не могло. Лишь с появлением во 2-й половине 19 в. бессемеровского процесса и мартеновского процесса (см. Мартеновское производство ), а затем и томасовского процесса стало возможным массовое производство литой С. В конце 19 в. начала применяться выплавка С. в электрических печах (см. Электросталеплавильное производство ). До середины 20 в. главенствующее положение среди способов производства С. занимал мартеновский процесс, на долю которого приходилось около 80% выплавляемой в мире С. В 50-х гг. был внедрён кислородно-конвертерный процесс , причём в последующие годы его роль резко возросла. Наряду с указанными способами массового производства С. развиваются более дорогие и менее производительные способы, позволяющие получать особо чистый металл высокого качества: вакуумная дуговая плавка (см. Дуговая вакуумная печь ), вакуумная индукционная плавка, электрошлаковый переплав , электроннолучевая плавка , плазменная плавка (см. Плазменная металлургия ).
Структура и свойства стали. К С. как важнейшему материалу современной техники предъявляются разнообразные требования, что обусловливает большое число марок С., отличающихся по химическому составу, структуре, свойствам. Основной компонент С. ‒ железо. Свойственный железу полиморфизм , т. е. способность кристаллической решётки менять своё строение при нагреве и охлаждении, присущ и С. Для чистого железа известны 2 кристаллические решётки ‒ кубическая объёмноцентрированная (a-железо, при более высоких температурах d-железо) и кубическая гранецентрированная (g-железо). Температуры перехода одной модификации железа в другую (910 °С и 1400 °С) называются критическими точками. Углерод и др. компоненты и примеси С. меняют положение критических точек на температурной шкале. Взаимодействие углерода с модификациями железа приводит к образованию т. н. твёрдых растворов . Растворимость углерода в a-железе весьма мала; этот раствор называется ферритом . В g-железе, существующем при высоких температурах, растворяется практически весь углерод, содержащийся в С. (предел растворимости углерода в g-железе 2,01%); образующийся раствор называется аустенитом . Содержание углерода в С. всегда превышает его растворимость в a-железе; избыточный углерод образует с железом химическое соединение ‒ карбид железа Fe 3 C, или цементит . Т. о., при комнатной температуре структура С. состоит из частиц феррита и цементита, присутствующих либо в виде отдельных включений (т. н. структурно-свободных феррита и цементита), либо в виде тонкой механической смеси, называемой перлитом . Общие сведения о температурных и концентрационных границах существования фаз (феррита, цементита, перлита и аустенита) даёт диаграмма состояния сплавов Fe ‒ С (см. Железоуглеродистые сплавы ).
Для феррита характерны относительно низкие прочность и твёрдость, но высокие пластичность и ударная вязкость. Цементит хрупок, но весьма твёрд и прочен. Перлит обладает ценным сочетанием прочности, твёрдости, пластичности и вязкости. Соотношение между этими фазами в структуре С. определяется главным образом содержанием в ней углерода; различные свойства этих фаз и обусловливают многообразие свойств С. Так, С., содержащая
0,1% С (в её структуре преобладает феррит), характеризуется большой пластичностью; С. этого типа используется для изготовления тонких листов, из которых штампуют части автомобильных кузовов и др. деталей сложной формы. С., в которой содержится
0,6% С, имеет обычно перлитную структуру; обладая повышенной твёрдостью и прочностью при достаточной пластичности и вязкости, такая С. служит, например, материалом для ж.-д. рельсов, колёс, осей. Если С. содержит около 1% С, в её структуре наряду с перлитом присутствуют частицы структурно-свободного цементита; эта С. в закалённом виде имеет высокую твёрдость и применяется для изготовления инструмента. Диапазон свойств С. расширяется с помощью легирования , а также термической обработки , химико-термической обработки , термомеханической обработки металла. Так, при закалке С. образуется метастабильная фаза мартенсит ‒ пересыщенный твёрдый раствор углерода в a-железе, характеризующийся высокой твёрдостью, но и большой хрупкостью; сочетая закалку с отпуском , можно придать С. требуемое сочетание твёрдости и пластичности.
Классификация сталей. В современной металлургии С. выплавляют главным образом из чугуна и стального лома. По типу сталеплавильного агрегата (кислородный конвертер, мартеновская печь, электрическая дуговая печь) С. называется кислородно-конвертерной, мартеновской или электросталью. Кроме того, различают металл, выплавленный в основной или кислой (по характеру футеровки) печи; С. при этом называется соответственно основной или кислой (например, кислая мартеновская С.).
По химическому составу С. делятся на углеродистые и легированные. Углеродистая сталь наряду с Fe и С содержит Mn (0,1‒1,0%) и Si (до 0,4%), а также вредные примеси ‒ S и Р; эти элементы попадают в С. в связи с технологией её изготовления (главным образом из шихтовых материалов). В зависимости от содержания С различают низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25‒0,6% С) и высокоуглеродистую (более 0,6% С) С. В состав легированных сталей , помимо указанных компонентов, входят т. н. легирующие элементы (Cr, Ni, Mo, W, V, Ti, Nb, Zr, Со и др.), которые намеренно вводят в С. для улучшения её технологических и эксплуатационных характеристик или для придания ей особых свойств; легирующими элементами могут служить также Mn (при содержании более 1%) и Si (более 0,8%). По степени легирования (т. с. по суммарному содержанию легирующих элементов) различают низколегированные (менее 2,5%), среднелегированные (2,5‒10%) и высоколегированные (более 10%) С. Легированные С. часто называются по преобладающим в ней компонентам (например, вольфрамовая, высокохромистая, хромомолибденовая, хромомарганцевоникелевая, хромоникелемолибденованадиевая).
По назначению С. делят на следующие основные группы: конструкционные, инструментальные и С. с особыми свойствами. Конструкционные стали применяют для изготовления строительных конструкций, деталей машин и механизмов, судовых и вагонных корпусов, паровых котлов и др. изделий. Конструкционные С. могут быть как углеродистыми (до 0,7% С), так и легированными (основные легирующие элементы ‒ Cr и Ni). Название конструкционной С. может отражать её непосредственное назначение (котельная, клапанная, рессорно-пружинная, судостроительная, орудийная, снарядная, броневая и т.д.). Инструментальные стали служат для изготовления резцов, фрез, штампов, калибров и др. режущего, ударно-штампового и мерительного инструмента. С. этой группы также могут быть углеродистыми (обычно 0,8‒1,3% С) или легированными (главным образом Cr, Mn, Si, W, Mo, V). Среди инструментальных С. широкое распространение получила быстрорежущая сталь . К С. с особыми физическим и химическим свойствами относятся электротехнические стали , нержавеющие стали , кислотостойкие, окалиностойкие, жаропрочные, С. для постоянных магнитов и др. Для многих С. этой группы характерно низкое содержание углерода и высокая степень легирования.
По качеству С. обычно подразделяют на обыкновенные (рядовые), качественные, высококачественные и особо высококачественные. Различие между ними заключается в количестве вредных примесей (S и Р) и неметаллических включений . Так, в некоторых С. обыкновенного качества допускается содержание S до 0,055‒0,06% и Р до 0,05‒0,07% (исключение составляет автоматная сталь , содержащая до 0,3% S и до 0,16% Р), в качественных ‒ не более 0,035% каждого из этих элементов, в высококачественных ‒ не более 0,025%, в особо высококачественных ‒ менее 0,015% S. Сера снижает механические свойства С., является причиной красноломкости , т. е. хрупкости в горячем состоянии, фосфор усиливает хладноломкость ‒ хрупкость при пониженных температурах.
По характеру застывания металла в изложнице различают спокойную, полуспокойную и кипящую С. Поведение металла при кристаллизации обусловлено степенью его раскисленности: чем полнее удалён из С. кислород, тем спокойнее протекает процесс затвердевания; при разливке малораскисленной С. в изложнице происходит бурное выделение пузырьков окиси углерода ‒ С. как бы «кипит». Полуспокойная С. занимает промежуточное положение между спокойной и кипящей С. Каждый из этих видов металла имеет достоинства и недостатки; выбор технологии раскисления и разливки С. определяется её назначением и технико-экономическими показателями производства.
Маркировка сталей. Единой мировой системы маркировки С. не существует. В СССР проведена большая работа по унификации обозначений различных марок С., что нашло отражение в государственных стандартах и технических условиях. Марки углеродистой С. обыкновенного качества обозначаются буквами Ст и номером (Ст0, Ст1, Ст2 и т.д.). Качественные углеродистые С. маркируются двузначными числами, показывающими среднее содержание С в сотых долях процента: 05, 08, 10, 25, 40 и т.д. Спокойную С. иногда дополнительно обозначают буквами сп, полуспокойную ‒ пс, кипящую ‒ кп (например, СтЗсп, Ст5пс, 08кп). Буква Г в марке С. указывает на повышенное содержание Mn (например, 14Г, 18Г). Автоматные С. маркируются буквой А (А12, А30 и т.д.), углеродистые инструментальные С. ‒ буквой У (У8, У10, У12 и т.д. ‒ здесь цифры означают содержание С. в десятых долях процента).
Обозначение марки легированной С. состоит из букв, указывающих, какие компоненты входят в её состав, и цифр, характеризующих их среднее содержание. В СССР приняты единые условные обозначения химического состава С.: алюминий ‒ Ю, бор ‒ Р, ванадий ‒ Ф, вольфрам ‒ В, кобальт ‒ К, кремний ‒ С, марганец ‒ Г, медь ‒ Д, молибден ‒ М, никель ‒ Н, ниобий ‒ Б, титан ‒ Т, углерод ‒ У, фосфор ‒ П, хром ‒ Х, цирконий ‒ Ц. Первые цифры марки обозначают среднее содержание С (в сотых долях процента для конструкционных С. и в десятых долях процента для инструментальных и нержавеющих С.); затем буквой указан легирующий элемент и цифрами, следующими за буквой,‒ его среднее содержание. Например, С. марки 3Х13 содержит 0,3% С и 13% Cr, С. марки 2X17H2 ‒ 0,2% С, 17% Cr и 2% Ni. При содержании легирующего элемента менее 1,5% цифры за соответствующей буквой не ставятся: так, С. марки 12ХН3А содержит менее 1,5% Cr. Буква А в конце обозначения марки указывает на то, что С. является высококачественной, буква Ш ‒ особо высококачественной. Обозначение марки некоторых легированных С. включает букву, указывающую на назначение С. (например, ШХ9 ‒ шарикоподшипниковая С. с 0,9‒1,2% Cr; Э3 ‒ электротехническая С. с 3% Si). С., проходящие промышленные испытания, часто маркируют буквами ЭИ или ЭП (завод «Электросталь»), ДИ (завод «Днепроспецсталь») или ЗИ (Златоустовский завод) с соответствующим очередным номером (ЭИ268). См. также Металлургия , Сталеплавильное производство .
Лит.: Сталеплавильное производство. Справочник, под ред. А. М. Самарина, т. 1‒2, М., 1964; Меськин В. C., Основы легирования стали, 2 изд., М., 1964; Гудремон Э., Специальные стали, пер. с нем., 2 изд., т. 1‒2, М., 1966; Дреге В., Сталь как конструкционный материал, пер. с нем., М., 1967; Гуляев А. П., Чистая сталь, М., 1975.
Сталь в искусстве. В средние века славились арабское оружие и доспехи из С. с плоскими узорами и надписями, выполненными гравированием или насечкой . Эти приёмы декорировки оружейники средневековой Европы дополнили чеканкой , наводкой и полировкой. С 16 в. в отделке часов, научных приборов и инструментов появляется устойчивая к коррозии зеркальная полировка, использование которой послужило стимулом для выпуска бытовых изделий из С. В 18 ‒ начале 19 вв. эстетические свойства С. наиболее ярко раскрылись в изделиях мастеров Тульского оружейного завода (мебель, зеркала, самовары, каминные экраны и т.п.). Как вид народного творчества известна с середины 19 в. златоустовская гравюра на С. В советском искусстве С. нашла применение в облицовке интерьеров, а также в скульптуре (В. И. Мухина, «Рабочий и колхозница», см. илл. ).
Лит.: Тульские «златокузнецы». [Альбом], Л., 1974.
Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .
В маркировке легированных сталей буквой Г
Чугун переделывается в сталь в различных по принципу действия металлургических агрегатах: мартеновских печах, кислородных конвертерах, электрических печах.
Сталь, содержащая в своём составе углерод, марганец,
кремний, серу и фосфор называется …
Б) углеродистой.
Г) с особыми свойствами.
Углеродистые стали содержат в своем составе углерод до 2,14%, марганец (до 0,8%), кремний (до 0,35%), серу (до 0,06%) и фосфор (до 0,07%)
В маркировке углеродистой конструкционной стали обыкновенного
Качества, поставляемой по химическому составу, впереди
маркировки ставится буква …
Б) Б.
Г) буква не пишется.
Стандартом предусмотрено три группы сталей: А, Б, В. При этом, стали группы А поставляются только по механическим свойствам, стали группы Б – только по химическому составу, а стали группы В – одновременно и по механическим свойствам, и по химическому составу
У углеродистой конструкционной стали обыкновенного
Качества, поставляемой по механическим свойствам, впереди
маркировки ставится буква …
А) А.
Г) буква не пишется.
Стандартом предусмотрено три группы сталей: А, Б, В. При этом, стали группы А поставляются только по механическим свойствам, стали группы Б – только по химическому составу, а стали группы В – одновременно и по механическим свойствам, и по химическому составу
6. Углеродистые стали, содержащие до 0,25% углерода
называются …
А) низкоуглеродистыми.
Г) с повышенным содержанием углерода.
Углеродистая сталь подразделяется на низкоуглеродистую (до 0,25% углерода) , среднеуглеродистую (от 0,25 до 0,6% углерода) и высокоуглеродистую (до 0,25% углерода) .
В углеродистых инструментальных сталях впереди маркировки
ставится буква …
В) У.
Инструментальную углеродистую сталь (ГОСТ 1435-90) маркируют буквой У (углеродистая) и цифрой, характеризующей среднее содержание углерода в десятых долях процента - У7 (углеродистая сталь, содержащая 0,7% С), У8, У9 и т. д
Сталь, в состав которой вводят специальные элементы для
придания ей требуемых свойств, называется …
А) легированной.
Стали, в состав которых вводят специальные элементы для придания требуемых свойств, называются легированными. По количеству легирующих элементов стали делят на 3 группы: - низколегированные - содержание л. э. до 2, 5%; - среднелегированные - л. э. от 2, 5% до 10 %. - высоколегированные – л. э. более 10%.
Сталь, в которой легирующих элементов содержится свыше
10%, называется …
Г) высоколегированной.
По количеству легирующих элементов стали делят на 3 группы: - низколегированные - содержание л. э. до 2, 5%; - среднелегированные - л. э. от 2, 5% до 10 %. - высоколегированные – л. э. более 10%.
У быстрорежущих сталей впереди маркировки ставится
буква …
Г) Р.
В начале марки легированных сталей могут также присутствовать дополнительные обозначения:
Р — быстрорежущая ; Ш — шарикоподшипниковая; А — автоматная ; Э — электротехническая.
11.У высококачественных сталей в конце маркировки
ставится буква …
А) А.
Буква «А» в конце марки является признаком высококачественной стали. Например, сталь 40ХНМ – качественная, а 40ХНМА – высококачественная
Коррозионностойкие (хромистые) стали содержат хрома
не менее …
При добавлении к стали хрома менее 12 % ее коррозионная стойкость не повышается: она остается на уровне обыкновенных углеродистых сталей. Однако введение в сталь хрома в количестве более 12 % делает ее стойкой к коррозии в атмосфере и в большинстве других промышленных средах. Стали с содержанием хрома более 12 % называют коррозионностойкими или, как часто их называют, нержавеющими сталями
13.К сталям и сплавам с особыми физическими и химическими свойствами относится …
Б) магнитная.
К группе сталей с особыми физическими и химическими свойствами относятся: магнитные и немагнитные, обладающие высоким электрическим сопротивлением, особыми тепловыми свойствами, нержавеющие жаропрочные и окалиностойкие
В маркировке легированных сталей буквой Г
обозначают …
Г) марганец.
Условные буквенные обозначения основных легирующих элементов приведены ниже.
А – азот, Б – ниобий ,В – вольфрам ,Г – марганец ,Д – медь , Е – селен ,К – кобаль, Л – бериллий, М – молибден , Н – никель, С – кремний, Т – титан, Ф – ванадий, Х – хром, Ц – цирконий ,Ч – РЗМ ,Ю – алюминий, Ш – магний
Читайте также: