Марки сплавов меди расшифровка
Бронзой называется сплав меди с алюминием, кремнием, оловом, бериллием и другими элементами, кроме цинка. Бронзы бывают алюминиевыми, кремниевыми, оловянными, бериллиевыми и т.д. – в зависимости от легирующего элемента.
Маркировка бронзы представляет собой определенную последовательность, начинающуюся с буквосочетания «Бр», после которого указываются легирующие элементы. Легирующие элементы перечисляются, начиная с элемента, который находится в максимальном процентном содержании относительно остальных.
Все бронзы подразделяются на оловянные и безоловянные
Оловянные бронзы
Оловянные бронзы применяются в химической промышленности и в качестве антифрикционных материалов благодаря высоким антикоррозийным и антифрикционным свойствам.
Легирующие элементы оловянных бронз – фосфор, цинк, никель. Цинк, входящий в состав оловянных бронз в количестве до 10%, служит для того, чтобы стоимость бронз стала меньше. Фосфор и свинец способствуют повышению антифрикционных свойств бронзы и улучшают их обрабатываемость резанием.
Литейные оловянные бронзы применяются:
· Деформированные бронзы - БрОФ6,5-0,4; БрОЦ4-3; БрОЦС4-4-2,5 – используются в качестве пружин, антифрикционных деталей, мембран
· Литейные бронзы - БрО3Ц12С5, БрО3Ц12С5, БрО4Ц4С17 – используются в антифрикционных деталях, арматуре общего назначения
Безоловянные бронзы – это двойные или многокомпонентные бронзы без олова, в состав которых входя такие элементы как марганец, алюминий, свинец, железо, никель, кремний, бериллий.
Алюминиевые бронзы обладают высокими технологическими и механическими свойствами, коррозийной стойкостью в условиях тропического климата и в морской воде. Для глубокой штамповки на практике используют однофазные бронзы, двухфазные бронзы применяются в виде фасонного литья и подвергают горячей деформации.
Алюминиевые бронзы, обладая более низкими литейными свойствами в сравнении с оловянными бронзами, способствуют более высокой плотности отливок.
Кремнистые бронзы. Кремний, входящий в состав бронзы (до 3,5%), повышает её пластичность и прочность. В сочетании с марганцем и никелем коррозийные и механические свойства кремнистых бронз повышаются. Они широко применяются при работе в агрессивной среде, для изготовления пружинящих деталей, которые должны работать при температуре до 2500°C.
Бериллиевыне бронзы обладают высокой прочностью благодаря термической обработке. Для них характерны высокие характеристики упругости, предела текучести и временного сопротивления, устойчивы к коррозии. Применяются в электронной технике, для пружинящих контактов, мембран, деталей, которые работают на износ.
Свинцовые бронзы представляют собой сплавы, состоящие из включения свинца, который практически не растворяется в меди, и кристаллов меди. Высокие антифрикционные свойства свинцовых бронз позволяют применять их для изготовления деталей, которые работают в условиях больших скоростей и повышенного давления (вкладыши подшипников скольжения). За счёт высокой теплопроводности, свинцовые бронзы БрС30 способствуют отведению теплоты, возникающей при трении.
Бронзы, легированные оловом и никелем, отличаются повышенными коррозийными и механическими свойствами.
Безоловянные бронзы применяются:
· Алюминиевые бронзы - БрАЖ9-4, БрАЖН10-4-4, БрА9Ж3Л, БрА10Ж3Мц2 – применяются для обработки давлением, в качестве деталей химической аппаратуры, арматуры и антифрикционных деталей
· Кремниевые бронзы - БрКМц3-1- применяются в качестве проволоки для пружин, лент, арматуры
· Бериллиевая бронза - БрБ2 – используется как прутки, проволоки для пружин, ленты, полосы
· Свинцовая бронза- БрС30- применяется в антифрикционных деталях
Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 9717.1—82 Медь. Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектра ГОСТ 9717.2—82 Медь. Метод спектрального анализа по металлическим стандартным образцам с фотографической регистрацией спектра ГОСТ 9717.3—82 Медь. Метод спектрального анализа по оксидным стандартным образцам ГОСТ 13938.1—78 Медь. Методы определения меди ГОСТ 13938.2—78 Медь. Методы определения серы ГОСТ 13938.3—78 Медь. Метод определения фосфора ГОСТ 13938.4—78 Медь. Методы определения железа ГОСТ 13938.5—78 Медь. Методы определения цинка ГОСТ 13938.6—78 Медь. Методы определения никеля ГОСТ 13938.7—78 Медь. Методы определения свинца ГОСТ 13938.8—78 Медь. Методы определения олова ГОСТ 13938.9—78 Медь. Методы определения серебра ГОСТ 13938.10—78 Медь. Методы определения сурьмы ГОСТ 13938.11—78 Медь. Метод определения мышьяка ГОСТ 13938.12—78 Медь. Методы определения висмута ГОСТ 13938.13—93 Медь. Методы определения кислорода ГОСТ 13938.15—88 Медь. Методы определения хрома и кадмия ГОСТ 27981.0—88 Медь высокой чистоты. Общие требования к методам анализа ГОСТ 27981.1—88 Медь высокой чистоты. Методы атомно-спектрального анализа ГОСТ 27981.2—88 Медь высокой чистоты. Метод химико-атомно-эмиссионного анализа ГОСТ 27981.3—88 Медь высокой чистоты. Метод эмиссионно-спектрального анализа с фотоэлектрической регистрацией спектра ГОСТ 27981.4—88 Медь высокой чистоты. Методы атомно-абсорбционного анализа ГОСТ 27981.5—88 Медь высокой чистоты. Фотометрические методы анализа ГОСТ 27981.6—88 Медь высокой чистоты. Полярографические методы анализа СТ СЭВ 543—77 Числа. Правила записи и округления
ЛАТУНЬ
Сплав меди с цинком, процентное содержание цинка в котором составляет от 5 до 45%, называется латунью. Латунь, в состав которой входит 2-20% цинка, называется томпак или красная латунь. Если содержание цинка равно 20-36%, то такая латунь называется жёлтой. Латуни, с более чем 45% цинка в своём составе, применяются крайне редко.
· Простые (двухкомпонентные) – сплавы которые состоят из цинка и меди с незначительными примесями других элементов;
· Специальные (многокомпонентные) латуни в своём составе помимо меди и цинка включают ряд других легирующих элементов.
Простые латуниДвухкомпонентные латуни обозначаются заглавной буквой «Л», за которой следует двузначная цифра, определяющая среднее значение процентного содержания меди в сплаве (Л80-латунь, в состав которой входит 80% меди и 20% цинка).
Какие ГОСТы медного лома существуют?
Марки меди – характеристики и маркировки с расшифровкой
Обозначение металлических сплавов, основанных на использовании меди, начинается с буквы «М». После нее следует цифра, характеризующая массовую долю меди в составе (класс сплава).
Так, при обозначении металла «М3», количество основного элемента достигает 99,5%, а «М00» – 99,96%. Также в маркировке обычно указываются дополнительные буквы, информирующие о способе получения сплава. Методы создания медных сплавов разделяются на:
- катодные (обозначается буквой «к»);
- раскисление с невысоким содержанием фосфора («р»);
- без раскислительных добавок – бескислородные («б»);
- раскисление с большим количеством фосфора («ф»).
Общая маркировка сплавов выглядит как «М1р». Однако способ получения указывается не всегда или вовсе не применяется, если использовались процессы гидролиза, пирометаллургии или гидрометаллургии. В таких случаях обозначение ограничивается массовой долей. Без учета модификаций сплавов, медь классифицируется на четыре основные марки:
- М0. Самый высокий класс медных сплавов, содержащий порядка 99,93-99,99% меди. Иногда для повышения физико-химических свойств в состав добавляется серебро и процент содержания основного элемента указывается как медь+серебро в качестве единого основного компонента. М0 – это наиболее чистый медный сплав, который применяется для изготовления токопроводящей продукции (силовых кабелей, проводников в электронике, бытовых проводов и так далее).
- М1. Более распространенный в современных условиях сплав. Он также используется для изготовления электротехнической продукции с менее строгими требованиями к качеству. Также М1 используется для производства металлопрокатных изделий, сварочных электродов, проволоки и так далее. Процент содержания меди в М1 составляет 99,9%.
- М2. Данная марка получила широкое применение на производстве продукции, требующей обработки высоким давлением. М2 – это менее пластичный металл, поскольку в его составе присутствует 99,7% меди. Часто сплав применяется для изготовления деталей криогенной техники.
- М3. Марка относится к сплавам с наименьшим содержанием меди (99,5%). Такие металлы содержат большое количество примесей и часто получаются в результате вторичной переработки медной продукции. Применяется сплав М3 для изготовления деталей методом проката.
Отдельные модификации характеризуют тип и количество дополнительных элементов. Подробные сведения о марках прописаны в Гост 859-2001.
Примеси в медных сплавах:
- висмут (0,0005-0,003%);
- железо (0,001-0,05%);
- никель (до 0,2%);
- цинк (0,001-0,005%);
- олово и сурьма (до 0,05%);
- мышьяк (не более 0,01%);
- свинец (до 0,05%);
- сера (0,002-0,01%);
- кислород (0,001-0,08%) и другие.
Если в составе отдельно указывается серебро для повышения электропроводимости, процент содержания не превышает 0,002.
Стандарты для медных сплавов
На территории нашей страны существует большое количество регламентов, используемых в качестве основных стандартов, обязательных для исполнения при работе с медью. К основным регламентам относятся:
- ГОСТ 859-2014 «Медь. Марки».
- ГОСТ 193-2015 «Слитки медные. Технические условия».
Для отдельных типов сплавов (бронзы, латуни) существуют свои регламенты. Стандарты периодически обновляются.
Гост 859-2001
Ранее данный регламент являлся основным для меди и медных сплавов. Однако в 2014 году он был заменен на ГОСТ 859-2014. В нем прописаны основные марки с учетом современных нововведений и дополненных требований к процессам производства, способам получения и так далее.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 9717.1-82* Медь. Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектра
ГОСТ 9717.2-82 Медь. Метод спектрального анализа по металлическим стандартным образцам с фотографической регистрацией спектра
ГОСТ 9717.3-82 Медь. Метод спектрального анализа по оксидным стандартным образцам
ГОСТ 13938.1-78* Медь. Методы определения меди
ГОСТ 13938.2-78* Медь. Методы определения серы
ГОСТ 13938.3-78* Медь. Метод определения фосфора
ГОСТ 13938.4-78* Медь. Методы определения железа
ГОСТ 13938.5-78* Медь. Методы определения цинка
ГОСТ 13938.6-78* Медь. Методы определения никеля
ГОСТ 13938.7-78* Медь. Методы определения свинца
ГОСТ 13938.9-78* Медь. Методы определения серебра
ГОСТ 13938.10-78* Медь. Методы определения сурьмы
ГОСТ 13938.11-78 Медь. Метод определения мышьяка
ГОСТ 13938.12-78* Медь. Методы определения висмута
ГОСТ 13938.13-93 Медь. Методы определения кислорода
ГОСТ 13938.15-88* Медь. Методы определения хрома и кадмия
ГОСТ 27981.0-88* Медь высокой чистоты. Общие требования к методам анализа
ГОСТ 27981.1-88 Медь высокой чистоты. Методы атомно-спектрального анализа
ГОСТ 27981.2-88 Медь высокой чистоты. Метод химико-атомно-эмиссионного анализа
ГОСТ 27981.3-88* Медь высокой чистоты. Метод эмиссионно-спектрального анализа с фотоэлектрической регистрацией спектра
ГОСТ 27981.4-88* Медь высокой чистоты. Методы атомно-абсорбционного анализа
* На территории Российской Федерации документы не действуют. Действует ГОСТ 31382-2009, здесь и далее по тексту. - Примечание изготовителя базы данных.
ГОСТ 27981.5-88 Медь высокой чистоты. Фотометрические методы анализа
ГОСТ 27981.6-88 Медь высокой чистоты. Полярографические методы анализа
СТ СЭВ 543-77 Числа. Правила записи и округления
Марки меди – характеристики и маркировки с расшифровкой
Обозначение металлических сплавов, основанных на использовании меди, начинается с буквы «М». После нее следует цифра, характеризующая массовую долю меди в составе (класс сплава). Так, при обозначении металла «М3», количество основного элемента достигает 99,5%, а «М00» – 99,96%. Также в маркировке обычно указываются дополнительные буквы, информирующие о способе получения сплава. Методы создания медных сплавов разделяются на:
- катодные (обозначается буквой «к»);
- раскисление с невысоким содержанием фосфора («р»);
- без раскислительных добавок – бескислородные («б»);
- раскисление с большим количеством фосфора («ф»).
Общая маркировка сплавов выглядит как «М1р». Однако способ получения указывается не всегда или вовсе не применяется, если использовались процессы гидролиза, пирометаллургии или гидрометаллургии. В таких случаях обозначение ограничивается массовой долей. Без учета модификаций сплавов, медь классифицируется на четыре основные марки:
- М0. Самый высокий класс медных сплавов, содержащий порядка 99,93-99,99% меди. Иногда для повышения физико-химических свойств в состав добавляется серебро и процент содержания основного элемента указывается как медь+серебро в качестве единого основного компонента. М0 – это наиболее чистый медный сплав, который применяется для изготовления токопроводящей продукции (силовых кабелей, проводников в электронике, бытовых проводов и так далее).
- М1. Более распространенный в современных условиях сплав. Он также используется для изготовления электротехнической продукции с менее строгими требованиями к качеству. Также М1 используется для производства металлопрокатных изделий, сварочных электродов, проволоки и так далее. Процент содержания меди в М1 составляет 99,9%.
- М2. Данная марка получила широкое применение на производстве продукции, требующей обработки высоким давлением. М2 – это менее пластичный металл, поскольку в его составе присутствует 99,7% меди. Часто сплав применяется для изготовления деталей криогенной техники.
- М3. Марка относится к сплавам с наименьшим содержанием меди (99,5%). Такие металлы содержат большое количество примесей и часто получаются в результате вторичной переработки медной продукции. Применяется сплав М3 для изготовления деталей методом проката.
Отдельные модификации характеризуют тип и количество дополнительных элементов. Подробные сведения о марках прописаны в ГОСТ 859-2001.
Описание
Медь М2 применяется: для производства высококачественных полуфабрикатов и сплавов на медной основе, обрабатываемых давлением; для изготовления изделий криогенной техники; круглых тянутых тонкостенных труб; тянутых прямоугольных труб, предназначенных для изготовления волноводов; тянутых капиллярных трубок, применяемых в аппарато- и приборостроении и холодильной технике; холоднокатаных фольги и ленты, холоднокатаных и горячекатаных листов и плит общего назначения; радиаторных лент, предназначенных для изготовления охлаждающих трубок и пластин радиаторов.
Примечание
Медь М2 получают путем огневого рафинирования и переплавки отходов и лома меди.
Примеси в медных сплавах
Поскольку медь практически не существует в чистом виде, металл уже содержит другие вещества. В процессе производства добавляются другие элементы, чтобы повысить физико-химические свойства сплава и придать ему уникальные характеристики. В составе обычно присутствуют:
- висмут (0,0005-0,003%);
- железо (0,001-0,05%);
- никель (до 0,2%);
- цинк (0,001-0,005%);
- олово и сурьма (до 0,05%);
- мышьяк (не более 0,01%);
- свинец (до 0,05%);
- сера (0,002-0,01%);
- кислород (0,001-0,08%) и другие.
Если в составе отдельно указывается серебро для повышения электропроводимости, процент содержания не превышает 0,002.
Какие существуют марки меди?
Для изготовления продукции не используется медь в чистом виде. Она применяется в качестве уже готовых сплавов, составы которых регламентируются общепринятыми стандартами. В России основным регламентом служит Гост 859-2001. Он подробно прописывает марки и составы медных сплавов, а также допустимые сферы их эксплуатации.
Поскольку медь является цветным металлом с уникальными физико-химическими свойствами, ее активно применяют в промышленности, на производстве, в строительстве и бытовых условиях. Также существует отдельная классификация медного лома, который скупается на вторичном рынке.
Медь М1 / Auremo
Обозначения
Название | Значение |
Обозначение ГОСТ кириллица | М1 |
Обозначение ГОСТ латиница | M1 |
Транслит | M1 |
По химическим элементам | Cu1 |
Описание
Медь М1 применяется: для производства проводников тока; проката; высококачественных бронз, не содержащих олова; изделий криогенной техники; круглых тянутых тонкостенных труб; холоднокатаных фольги и ленты, холоднокатаных и горячекатаных листов и плит общего назначения; проволоки для изготовления плетенок металлических экранирующих типа ПМЛ, предназначенных для экранирования проводов и кабелей; горячекатаных и холоднокатаных анодов, применяемых для гальванических покрытий изделий; холоднодеформированной ленты прямоугольного сечения с толщиной 0,16−0,30 мм, предназначенной для коаксиальных магистральных кабелей; радиаторных лент, предназначенных для изготовления охлаждающих трубок и пластин радиаторов; тянутых труб прямоугольного и квадратного сечения, предназначенных для изготовления проводников обмоток статоров электрических машин с жидкостным охлаждением; профилей для изготовления роторов погружных электродвигателей; круглой сварочной проволоки и круглых сварочных прутков тянутых и прессованных диаметром от 1,2 до 8,0 мм, предназначенных для автоматической сварки в среде инертных газов, под флюсом и газовой сварки неответственных конструкций из меди, а также изготовления электродов для сварки меди и чугуна.
Примечание
Медь М1 получают переплавкой катодов. Медь марки М1 по химическому составу соответствует меди марки Cu-ETP по Евронорме EN 1652:1998.
Стандарты
Химический состав
Стандарт | S | Ni | Fe | Cu | As | Zn | Sn | Sb | Pb | Bi | O |
ГОСТ 1173-2006 | ≤0.004 | ≤0.002 | ≤0.005 | Остаток | ≤0.002 | ≤0.004 | ≤0.002 | ≤0.002 | ≤0.005 | ≤0.001 | ≤0.05 |
ГОСТ 16130-90 | ≤0.004 | ≤0.002 | ≤0.005 | Остаток | ≤0.002 | ≤0.004 | ≤0.002 | ≤0.002 | ≤0.005 | ≤0.001 | ≤0.05 |
Cu
— основа. По ГОСТ 1173-2006, ГОСТ 1535-2006 и ГОСТ 859-2001 суммарное содержание Cu+Ag ≥ 99,90 %. Медь, предназначенная для электротехнической промышленности и подлежащая испытанию на электропроводность дополнительно обозначается буквой Е в конце марки: М1Е.
Механические характеристики
Описание механических обозначений
Название | Описание |
Сечение | Сечение |
σB | Предел кратковременной прочности |
d5 | Относительное удлинение после разрыва |
d10 | Относительное удлинение после разрыва |
d10 | Относительное удлинение после разрыва |
HV | Твердость по Виккерсу |
Физические характеристики
Описание физических обозначений
Название | Описание |
Е | Модуль нормальной упругости |
l | Коэффициент теплопроводности |
R | Уд. электросопротивление |
С | Удельная теплоемкость |
Медь М1р / Auremo
Обозначения
Название | Значение |
Обозначение ГОСТ кириллица | М1р |
Обозначение ГОСТ латиница | M1p |
Транслит | M1r |
По химическим элементам | Cu1р |
Описание
Медь М1р применяется: для производства проводников тока; высококачественных бронз, не содержащих олова; холоднокатаных фольги и ленты, холоднокатаных и горячекатаных листов и плит общего назначения; тянутых труб прямоугольного и квадратного сечения, предназначенных для изготовления проводников обмоток статоров электрических машин с жидкостным охлаждением; тянутых и холоднокатаных труб, применяемых в теплообменных аппаратах; тянутых капиллярных трубок, применяемых в аппарато- и приборостроении и холодильной технике; бесшовных тянутых труб, применяемых в системах питьевого водоснабжения, холодного и горячего водоснабжения, водяного (парового) отопления, охлаждения, канализации, водоочистных сооружений и газоснабжения; плит горячекатаных для изготовления деталей кристаллизаторов установок неприрывной разливки стали; круглой сварочной проволоки и круглых сварочных прутков тянутых и прессованных диаметром от 1,2 до 8,0 мм, предназначенных для автоматической сварки в среде инертных газов, под флюсом и газовой сварки неответственных конструкций из меди, а также изготовления электродов для сварки меди и чугуна.
Примечание
Медь М1р получают переплавкой катодов и лома меди с раскислением фосфором. Медь марки М1р по химическому составу соответствует меди марки Cu-DLP по Евронорме EN 1652:1998.
Стандарты
Химический состав
Стандарт | S | P | Ni | Fe | Cu | As | Zn | Sn | Sb | Pb | Bi | O |
ГОСТ 1173-2006 | ≤0.005 | 0.002-0.012 | ≤0.002 | ≤0.005 | Остаток | ≤0.002 | ≤0.005 | ≤0.002 | ≤0.002 | ≤0.005 | ≤0.001 | ≤0.01 |
ГОСТ 16130-90 | ≤0.005 | 0.002-0.012 | ≤0.002 | ≤0.005 | Остаток | ≤0.002 | ≤0.005 | ≤0.002 | ≤0.002 | ≤0.005 | ≤0.001 | ≤0.01 |
Cu — основа. По ГОСТ 1173-2006, ГОСТ 1535-2006 и ГОСТ 859-2001 суммарное содержание Cu+Ag ≥ 99,90 %. Медь, предназначенная для электротехнической промышленности и подлежащая испытанию на электропроводность дополнительно обозначается буквой Е в конце марки: М1рЕ. По СТП М371-87 содержание фосфора в горячекатаных плитах должно быть в пределах 0,004 — 0,012 %.
Марки меди – ГОСТ 859-2001, характеристики, расшифровка
Полимерные трубы давно вытеснили своих конкурентов из металлов в сфере прокладки водопроводных, канализационных коммуникаций снаружи и внутри различного вида сооружений в коммунальном, бытовом хозяйстве.
При приобретении трубных изделий одним из основных критериев выбора являются их физические параметры, к примеру потребителю или мастеру полезно знать ответ на вопрос – pn 20 труба что значит?
Основная информация о характеристиках полимерных труб указана на их наружной оболочке, чтобы воспользоваться приведенными данными, следует разбираться в расшифровке символов условных обозначений.
Полученные сведения весьма полезны как рядовому потребителю, так и специалистам, занимающимся профессиональным монтажом трубопроводных магистралей горячего (ГВС) и холодного (ХВС) водоснабжения, отопления.
Мягкий, пластичный металл розовато-золотистого цвета. Его красота издревле привлекала человека, поэтому первыми изделиями из меди были украшения.
В присутствии кислорода медные слитки и изделия из меди приобретают красновато-жёлтый оттенок за счёт образования плёнки из оксидов. Во влажной среде в присутствии углекислого газа медь становится зеленоватой.
Медь имеет высокие показатели теплопроводности и электропроводности, что обеспечивает ей использование в электротехнике. Не меняет свойств в значительном диапазоне температур от очень низких до очень высоких. Не магнитная.
В природе залежи медной руды чаще, чем других металлов, находятся на поверхности. Это позволяет вести добычу открытым способом. Встречаются крупные медные самородки с высокой чистотой меди и медные жилы. Помимо этого медь получают из таких соединений:
- медный колчедан,
- халькозин,
- борнит,
- ковеллин,
- куприт,
- азурит,
- малахит.
Обозначения и размеры медных труб
Труба медная – 1/2 дюйма, как и продукция иных диаметров системы дюймового исчисления, на сегодня все чаще измеряются в миллиметрах. Большим спросом пользуется продукция диаметром от 10 мм до 22 мм для систем водной подачи, и от 32 мм до 42 мм – для систем слива.
Помимо этого, существуют иные обозначения размерности труб. Сейчас обозначение в виде дроби, такое как 12/14, указывает внешний и внутренний диаметр в миллиметрах. Ранее же 1/4 указывался только внешний диаметр (1/4 дюйма).
Согласно ГОСТу размер медной трубы обозначается дробью. Числитель идентифицирует внешний диаметр в миллиметрах, а знаменатель указывает на толщину стенки. Труба 14/1 представляет собой медную трубку с диаметром по внешней поверхности — 14 мм, а по внутренней — 13 мм. Толщина стенки при этом составляет 1 миллиметр.
Медные сплавы, их свойства, характеристики, марки
Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства. К медным сплавам относят: бронзу, латунь и медно-никелевые сплавы.
Бронза
Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец. Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.
Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве. Буквенные обозначения легирующих элементов бронз:
- А – алюминий,
- Б – бериллий,
- Ж – железо,
- К – кремний,
- Мц – марганец,
- Н – никель,
- О – олово,
- С – свинец,
- Ц – цинк,
- Ф – фосфор.
Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%». Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».
Латунь
Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово. Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям.
У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.
Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни.
Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.
Медно-никелевые сплавы:
- Мельхиор — сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
- Нейзильбер – дополнительно содержит цинк,
- Константан – дополнительно содержит марганец.
У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.
Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра. Выпускается 2 марки мельхиора:
- МНЖМц – сплав меди с никелем, железом и марганцем;
- МН19 – сплав меди и никеля.
Недостатки медных труб
У каждого материала есть свои достоинства и недостатки, медные трубки – не исключение. Высокая цена — основное «слабое место» не только для отожженных и неотожженных медных труб, но и любого другого медного изделия.
Трубопровод из сплава меди обойдется на порядок дороже, нежели аналогичный трубопровод, произведенный из стальных труб либо пластика. Высокая степень деформации. Медь, не зависимо от состояния, — достаточно мягкий и эластичный металл, поэтому продукция из нее легко поддается деформации. Медные тонкостенные трубки легко повредить.
Трудоемкий монтаж. Как пайка, так и сборка на фитингах с накидными гайками и другими крепежами – достаточно трудоемкие процессы.
Медный сплав – это хороший тепловой проводник, а значит, при транспортировке горячей воды, трубка нагревается. Существует вероятность ожога со стороны пользователя. Также данное свойство делает невозможным его применение в определенных областях по причине большой потери тепла.
Разрешить многие проблемы и устранить ряд недостатков возможно благодаря использованию специальных покрытий из полиэтилена либо поливинилхлорида, которые применяются для отожженных труб. Этот наружный слой защищает изделие от механических воздействий, «остужает» поверхность, тем самым обеспечивает безопасность при эксплуатации.
Область применения сплавов меди
Медь обладает невысоким удельным сопротивлением. Это свойство обеспечило меди широкое применение в электротехнической промышленности. Из меди изготавливаются проводники, провода, кабели. Медь используется при изготовлении печатных плат различных электронных устройств. Медные провода используются в электрических двигателях и трансформаторах.
У меди высокая теплопроводность. Это обеспечивает ей применение при изготовлении охладительных и отопительных радиаторов, кондиционеров, кулеров.
Прочность и коррозиоустойчивость меди послужили основанием для изготовления из неё труб, находящих значительную сферу применения: в водопроводных, газовых и отопительных системах, в охладительном оборудовании, в кондиционировании. В строительстве медь применяется при изготовлении крыш и фасадных деталей зданий.
Бактерицидные особенности меди дают ей возможность использования в медицинских заведениях как дезинфицирующего материала: при изготовлении деталей интерьера, которых люди касаются больше всего – дверных ручек, перил, поручней, бортиков кроватей и т.п. Медные сплавы имеют не меньшую сферу применения.
Бронзы (по маркам) применяются при производстве деталей машин: паровой и водяной арматуры, элементов ответственного назначения, подшипников, втулок. Оловянистые деформируемые бронзы используют для производства сеток, используемых в целлюлозно-бумажной промышленности.
Латуни (по маркам) находят применение при производстве деталей машин в области теплотехники и химической аппаратуры. Из них изготавливают различные змеевики и сильфоны.
В автомобилестроении латуни используют для изготовления конденсаторных труб, патрубков, метизов. В судостроении и авиастроении латуни также используются для изготовления деталей, конденсаторных труб, метизов. Из латуней изготавливаются детали часовых механизмов, полиграфические матрицы.
Мельхиор МНЖМц используется для производства конденсаторных трубок морских судов, работающих в наиболее тяжёлых условиях. Мельхиор МН19 используется для изготовления медицинских инструментов, монет, украшений, столовых приборов.
«Считываем» информацию
Если взять в руки полипропиленовую трубу, можно увидеть на ней длинный ряд символов, аббревиатур и цифр. Давайте разберемся, что они обозначают. На первом месте обычно стоит название фирмы изготовителя.
Далее идет обозначение типа материала, из которого выполнено изделие: РРН, PPR, PPB. На трубной продукции обязательно указывается рабочее давление, которое обозначается двумя буквами – PN, – и цифрами – 10, 16, 20, 25. Несколькими числами указаны диаметр изделия и толщина стенки в миллиметрах.
- Нормативные документы, в соответствии с которыми изготовлена трубная продукция, международные регламенты.
- Знак качества.
- Информация о технологии, по которой выполнено изделие, и классификация по MRS (минимальная длительная прочность).
- 15 цифр, содержащих информацию о дате производства, номере партии и т. д. (последние 2 – год выпуска).
А теперь остановимся подробнее на самых важных характеристиках полипропиленовых труб, указанных в маркировке.
Источники меди для вторсырья
Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться.
Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья.
На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.
Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо.
Современное промышленное производство невозможно себе представить без использования цветных металлов. В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально.
Медь и медные сплавы
Для изготовления продукции не используется медь в чистом виде. Она применяется в качестве уже готовых сплавов, составы которых регламентируются общепринятыми стандартами. В России основным регламентом служит ГОСТ 859-2001. Он подробно прописывает марки и составы медных сплавов, а также допустимые сферы их эксплуатации. Поскольку медь является цветным металлом с уникальными физико-химическими свойствами, ее активно применяют в промышленности, на производстве, в строительстве и бытовых условиях. Также существует отдельная классификация медного лома, который скупается на вторичном рынке. Наша компания осуществляет прием меди по цене от 340 рублей за кг. Подробности об условиях и стоимости конкретных типах медных сплавов представлены на сайте.
Наши цены на прием меди
Вид меди | Цена за кг, руб |
Лом меди блеск | 555-590 |
Кусок меди | 550-575 |
Медный микс | 425-468 |
Лом меди жженка | 540-575 |
Лом луженой меди, пережженные отходы | 450-475 |
Химический состав
Стандарт | S | Ni | Fe | Cu | As | Zn | Sn | Sb | Pb | Bi | O |
ГОСТ 1173-2006 | ≤0.004 | ≤0.002 | ≤0.005 | Остаток | ≤0.002 | ≤0.004 | ≤0.002 | ≤0.002 | ≤0.005 | ≤0.001 | ≤0.05 |
ГОСТ 16130-90 | ≤0.004 | ≤0.002 | ≤0.005 | Остаток | ≤0.002 | ≤0.004 | ≤0.002 | ≤0.002 | ≤0.005 | ≤0.001 | ≤0.05 |
Cu — основа. По ГОСТ 1173-2006, ГОСТ 1535-2006 и ГОСТ 859-2001 суммарное содержание Cu+Ag ≥ 99,90 %. Медь, предназначенная для электротехнической промышленности и подлежащая испытанию на электропроводность дополнительно обозначается буквой Е в конце марки: М1Е.
1 Область применения
Настоящий стандарт распространяется на медь, изготовляемую в виде катодов, а также литых и деформированных полуфабрикатов.
Стандарт пригоден для целей сертификации.
Марки сплавов меди расшифровка
МКС 77.120.30
ОКП 17 3320
Дата введения 2002-03-01
1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 503 "Медь"
ВНЕСЕН Госстандартом России
2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 19 от 24 мая 2001 г.)
За принятие проголосовали:
Наименование национального органа по стандартизации
Госстандарт Республики Беларусь
Госстандарт Республики Казахстан
3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 30 июля 2001 г. N 301-ст межгосударственный стандарт ГОСТ 859-2001 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 марта 2002 г.
5 ИЗДАНИЕ (февраль 2003 г.) с Поправкой (ИУС 1-2002)
Переиздание (по состоянию на май 2008 г.)
3 Технические требования
3.1 Химический состав меди должен соответствовать указанному в таблицах 1 и 2. При учете и оформлении сопроводительной документации допускается указывать массовую долю примесей в меди всех марок в граммах на тонну (частях на миллион, ррм).
Таблица 1 - Химический состав катодной меди
Массовая доля для марок
Примеси по группам, не более:
Сумма 1-й группы
Сумма 2-й группы
Сумма 5-й группы
Сумма перечисленных примесей
Кислород, не более
3.2 Массовую долю элементов, не указанных в таблицах 1 и 2, устанавливают по соглашению (контракту) сторон.
3.3 Требования к физическим свойствам меди - удельному электрическому сопротивлению, спиральному удлинению (способности к рекристаллизации при заданных параметрах термической обработки), механическим свойствам устанавливают в стандартах на конкретные виды продукции и (или) соглашением (контрактом) сторон.
Допускается использование других методов анализа, по точности не уступающих приведенным выше.
Арбитражные методы анализа указывают в стандартах на конкретные виды продукции.
Медь М1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Медь она и в Африке медь?
Данная статья является в каком-то роде продолжением нашей предыдущей статьи, про омедненную (CCA) и медную (Cu) витую пару. На этот раз, мы уделим внимание вопросу ценообразования на бюджетные медные 4х-парные UTP кабели, а именно, дадим ответ на вопрос: почему на отечественном рынке такой существенный разброс в цене на обычный медный 4-парный кабель UTP 5e категории произведенный в Китае? Разница в цене между медным и омедненым кабелем очевидна, и не вызывает вопросов. Высокий спрос на дешевую витую пару (UTP кабель) и острый дефицит меди породил соответствующее предложение — омедненные кабели, однако качество последних оставляет желать лучшего. Многие потребители, вдоволь наэкспериментировавшись с омедненной витой парой, вернулись обратно к медной. |
Китай один из самых основных импортеров меди. Из года в год потребности в меди на внутреннем рынке Китая только увеличиваются и отчасти сдерживаются высокой ценой на медь. С 1 января 2006 г. в Китае запрещена переработка медного лома и концентрата меди с целью экспорта конечной продукции. Кроме того, были введены 13%-ный НДС и 5%-ная экспортная пошлина на экспорт катодной меди.
Таким образом, в связи с нехваткой меди на мировом рынке и политикой китайского правительства направленной на смягчение дефицита в медном ломе внутри страны, последний стал более привлекателен для некоторых китайских производителей выпускающих дешевую витую пару.
Какая медь используется при производстве жил кабеля витая пара ?
При производстве кабелей связи может быть использована медь разного качества. Условно можно выделить три класса: А, B, С. Небольшое сравнительное описание классов меди дано в таблице №1.
Таблица №1
Одной из важных характеристик проводников является удельное сопротивление. Удельное сопротивление характеризует способность проводника проводить электрический ток, и представляет собой величину сопротивления однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 мм². Для справки: в соответствии с международным стандартом (IACS), величина удельного сопротивления меди используемой для электрических проводников должна составлять 0.017241 Ом*мм2/м при температуре 20° C. Чем выше сопротивление, тем, естественно, хуже проводник.
Традиционно производители кабелей связи используют медь класса A, т.е. самую качественную и чистую медь, но в связи с дефицитом, или необходимостью уложится в низкий бюджет за катушку озвученный заказчиком, производители могут использовать менее качественную медь класса B, С, и даже омедненную медь, речь о которой пойдет ниже.
Возможно, вы испытали легкое замешательство, столкнувшись с загадочным названием «омедненная медь», и это нормально. У омедненной меди есть англоязычное название — CCC (Copper Clad Copper), аналогично CCA (Copper Clad Aluminium). Технологически омедненная медь – это жила, с сердцевиной из меди очень плохого качества (медный лом), поверх которой нанесен слой более-менее качественной электротехнической меди.
Как вы понимаете, удельное сопротивление сердцевины и поверхностного слоя жилы будет разным, как и в случае CCA кабеля, что так же негативно будет сказываться на передаче данных и на максимальной длине сегментов. Об этом подробно было написано в предыдущей статье.
Какую же денежную выгоду продавцам сулит использование производителями меди плохого качества ?
Для ответа на этот вопрос следует знать, что конечная стоимость, например, обычного 4-парного кабеля UTP 5е категории для внутренней прокладки на 70-80 % зависит от цены на медь. Для оценки разницы в цене на медь мы хотим привести данные (таблица №2) о стоимости меди для китайских производителей в один из периодов 2009 года.
Таблица №2
Класс меди | Цена в USD за тонну |
А | 6700 |
B | 6550 |
C | 6300 |
Медь для CCC (Copper Clad Copper) | 6000 |
Таким образом, используя медь очень плохого качества при производстве кабеля можно сэкономить более 10% от себестоимости кабеля. Второй уловкой, к которой прибегают производители самой дешевой витой пары это существенное занижение диаметра жилы, что опять же позволяет сэкономить на меди.
Однако, мы обращаем ваше внимание на то, что при производстве всех кабелей TOPLAN ® используется только качественная электротехническая медь класса А, что заметно отличает нас от других производителей медных кабелей витая пара в этом сегменте, предлагающих, якобы, медные кабели, но по цене близкой скорее к омедненным, а не медным.
Мы рекомендуем:
Читайте также: