Марка сплава для втулки подвергающейся интенсивному износу
Стремитесь максимально увеличить срок эксплуатации узлов или механизмов оборудования? Проблему решит применение износостойких деталей. Бронзовые втулки выдерживают высокие динамические нагрузки, отличаются надежностью при доступной стоимости.
втулка изготовление втулка изготовлениеБронзовая втулка: почему ее выбирают
Втулки из бронзы — технологичные расходники сборки, которые характеризуются хорошей пластичностью. Детали используются в оснащении, подвергающемся существенным механическим воздействиям, и обеспечивают сохранность основных частей конструкции. Интенсивность рабочего процесса не приводит к утрате свойств.Дешевый аналог — втулки из полимеров, но сфера их применения остается узкой, а предельные нагрузки такие изделия не переносят вовсе.Запчасть из бронзы не раскалывается. Основной сплав инертен по отношению к средам любой агрессивности. Следовательно, область применения детали широка.
Кстати: свойства бронзы ценили наши пращуры. Известно, что кельтами в VIII в. до н. э. использовались бронзовые составляющие сбруи. Тогда конская упряжь была одной из самых нагруженных конструкций. Доступна такая роскошь с включениями недешевого металла была только элите того времени.
Характеристики и преимущества
Бронзовая втулка прочна, но не столь тверда как стальная. В условиях повышенного трения она окажется выносливее, изнашивается медленнее, замена ее нужна гораздо реже, что автоматически продлевает срок работы оборудования. Дополнительные преимущества:
- Устойчивость к коррозии. Бронза не окисляется при контакте с воздухом или особенным окружением — соленой водой, технологическими жидкостями.
- Малый коэффициент трения материала гарантирует отличные антифрикционные свойства, низкую адгезию. Деталь не способна схватываться с материалами соприкасающихся частей при тесном касании.
- Нагрузка по площади соприкосновения распределяется равномерно, абразивные частицы затягиваются в глубину, подальше от границ контакта. Это свойство предохраняет сталь от износа.
- Повышенная теплоемкость и теплопроводность изделий.
Большой ресурс удлиняет промежутки планового техобслуживания. Приобретая подобную деталь, в итоге вы экономите. Ценное дорогое оборудование не прощает халатного обращения.
Популярные виды втулок, где применяются.
Востребованными в данный момент считаются модели из сплавов:
- БрОЦС(с оловянно-цинково-свинцовой добавкой), марка 555 — самая мягкая.
- БрОФ (плюс олово, фосфор).
- БрАЖН, с добавлением никеля. Часто используется для ремонта морских судов.
- БрОС (оловянно-свинцовистый тип). Детали незаменимы в высокотемпературных средах, сохраняют работоспособность при нагреве до 500оС.
Классика применения втулки — подшипник скольжения для турбин, прокатных станов, насосов, станков, редукторов, генераторов.
Знаете ли Вы , что ранее существовал материал, имеющий в своем составе мышьяк, но распространения он не получил? Такие предметы обнаружены в майкопском кургане, датированы 4 тысячелетием до н. э. В Древнем Риме медь смешивали с цинковой рудой, создавая заготовки для создания достойных орудий труда. Двести лет назад англичане получили латунь с чистым цинком. Так началась эра подделки золотых изделий.
Производство втулок — методы
Бронзовые втулки представлены в виде цилиндра с центральным отверстием. Классифицируются они с учетом марки исходного металла, толщины стенок.Производятся детали несколькими способами:
- Центробежным литьем. Этот метод считается прогрессивным и экономичным. Конечная продукция отличается высокой плотностью, воздушные полости отсутствуют. Металл выливается во вращающуюся емкость, кристаллизация происходит при воздействии высокого давления.
- Литьем в кокиль. Особая разборная форма после остывания сплава раскрывается, заготовка извлекается. Затвердевание происходит благодаря естественной силе тяжести. Плотность сплава окажется ниже, чем у предыдущего варианта. Преимущества такого производства — возможность безукоризненного выполнения деталей сложных форм.
- Резанием. Применима в отношении бронз типа БрОЦС для заготовок, которые предусматривают последующую обработку на станках. Эксперты отмечают высокую себестоимость способа, поскольку требуются существенные припуски. Несомненный плюс — изготовление комплектующих с нестандартными параметрами.
Цены на продукт зависят от марки, размеров, производителя и количества изделий в партии. Оригинал статьи " Бронзовая втулка: почему ее выбирают "
Важная информация
Мы разместили cookie-файлы на ваше устройство, чтобы помочь сделать этот сайт лучше. Вы можете изменить свои настройки cookie-файлов, или продолжить без изменения настроек.
Легкие сплавы
Из легких сплавов в качестве антифрикционных материалов чаще всего применяют алюминиевые.
Неответственные подшипники изготовляют из литейных сплавов Al–Si (АЛЗ; АЛ4; АЛ5), Аl–Mg (АЛ8). Al–Cu (АЛ10В; АЛ18В) предпочтительно отливкой в металлические формы (НВ 65—70). Целесообразнее изготовлять подшипники штамповкой из деформируемых сплавов типа АК4, АК4-1 (НВ 80—90).
Широкое применение имеют нетермообрабатываемые (НВ 40—60) сплавы АМ8 (8 % Сu); АМК2 (8% Сu; 2% Si); АЖ6 (6% Fe); АН-2,5 (2,5% Ni), АСС6-5 (6% Sb, 5% Pb). Пластичные сплавы АК5М и АН-2,5 (НВ 35—45) применяют в биметаллических ленточных вкладышах.
Наиболее высокими антифрикционными качествами обладают оловянные алюминиевые сплавы (содержание Sn до 20%). Один из лучших сплавов этого типа, сочетающий пластичность и высокую прочность, имеет состав; 6% Sn; 1,5% Ni; 0,5—1 % Sb; 0,5% Si; 0,5—1% Mn; остальное Al.
Твердость антифрикционных алюминиевых сплавов НВ 40—80; теплопроводность 0,12—0,24 Вт/(м·°С); коэффициент линейного расширения (21—24)·10 –6 ; модуль упругости Е ≈ 7·10 4 МПа. Предел прочности литых сплавов 120—180 МПа, штампованных 200—300 МПа.
Алюминиевые сплавы коррозиестойки и не вызывают окисления масла. Недостатком их является пониженная прирабатываемость и склонность к наволакиванию на вал. Необходима смазка под давлением и применение валов повышенной твердости (> HRC 55).
Модуль упругости алюминиевых сплавов невелик, поэтому для нормальной работы необходимо повышение жесткости подшипников (утолщение стенок, выполнение буртиков жесткости, увеличение жесткости постелей).
В конструкции подшипников из алюминиевых сплавов надо учитывать их высокий коэффициент линейного расширения. При нагреве зазор в подшипнике возрастает, поэтому «холодный» зазор делают минимальным, совместимым с условием надежной работы подшипника в пусковые периоды. Кроме того, при нагреве возрастает натяг на посадочной поверхности подшипника. Подшипники из алюминиевых сплавов предпочтительно применять в корпусах из тех же сплавов.
Втулки из алюминиевых сплавов, установленные в корпусах из материалов с низким коэффициентом линейного расширения (сталь, чугун), могут при повышении температуры приобрести остаточные деформации сжатия. В таких случаях применяют минимальные посадочные натяги с обязательным стопорением втулок; диаметр стопорных штифтов рекомендуется увеличивать во избежание сминания материала подшипника.
Чтобы компенсировать изменение линейных размеров втулки при нагреве, ее делают с температурным швом — разрезом, который располагают в ненагруженной области подшипника. Такие втулки устанавливают в корпус с натягом, который поддерживается более или менее постоянным при колебаниях температуры. Втулки со швом необходимо стопорить от проворачивания.
Магниевые сплавы как антифрикционный материал близки к алюминиевым, но отличаются от последних еще более низким модулем упругости (Е = 4,2·10 4 МПа) и более высоким коэффициентом линейного расширения α = (26—28)·10 –6 1/°С.
Для изготовления подшипников пригодны литейные сплавы МЛЗ, МЛ4 и деформируемые MA1, МА2.
Твердость магниевых сплавов НВ 30—40, теплопроводность 0,072—0,084 Вт/(м·°С).
При конструировании подшипников из магниевых сплавов нужно соблюдать те же правила, что и для алюминиевых сплавов.
Серебро
Для тяжелонагруженных опор машин, выпускаемых небольшими сериями, применяют подшипники с поверхностью трения из серебра (с присадкой небольших количеств Sn и Рb).
Серебряные покрытия отличаются пластичностью, мягкостью (в отожженном состоянии НВ 25—35), хорошими антифрикционными качествами и высоким сопротивлением усталости.
Теплопроводность серебряных покрытий высокая — 0,36—0,42 Вт/(м·°С). Коэффициент линейного расширения 18·10 –6 . Модуль упругости Е = 8,2·10 4 МПа. Температура плавлении 960°С.
Серебро заливают на поверхность вкладышей слоем 0,1—0,3 мм или наносят электролитически на пористую бронзовую или медно-никелевую подложку слоем толщиной 20—50 мкм.
В отдельных случаях для улучшения связи с вкладышем серебро заливают на мелкоячеистую стальную основу. Выступающие на поверхность участки стальной матрицы увеличивают несущую способность подшипника.
В целях улучшения прирабатываемости на поверхность серебряного покрытия наносят слой свинца или свинцово-сурьмяного сплина толщиной 10—30 мкм, который для предупреждения коррозии покрывают слоем индия толщиной несколько микрометров.
Необходимо применение валов повышенной твердости (> HRC 50).
Важная информация
Мы разместили cookie-файлы на ваше устройство, чтобы помочь сделать этот сайт лучше. Вы можете изменить свои настройки cookie-файлов, или продолжить без изменения настроек.
Что такое бронзовая втулка
Бронзовая втулка , на первый взгляд небольшая, незначительная деталь, играющая важную роль в любом механизме. Втулка из бронзы, как правило, используется в качестве подшипника скольжения. Играет защитную роль для подвижных деталей, подвергающихся усиленной нагрузке и трению. Благодаря физическим характеристикам металла и принципу изготовления, бронзовая втулка устойчива к давлению, эластична, износостойка. Область применения и надежность определяется маркой металла.
Сплавы с высокими показателями вязкости и долговечности очень ценны в промышленности, поэтому важные износостойкие расходные детали выполняются из разных марок бронзы.
Все сложные механизмы, имеющие узлы трения, скольжения оснащены втулками из бронзы. Этот расходный материал выполняет защитное свойство, обеспечивает бесперебойную работу, надежность, исключает неожиданные поломки.
Втулка из бронзы имеют низкий коэффициент трения, она принимает весь удар от воздействия сил трения на себя и смягчает это воздействие на основные детали механизма.
Возможность установки и работы втулок при маленьком зазоре, высокие антифрикционные качества обеспечивают широкую сферу использование деталей. Втулки из бронзы применимы в простом оборудовании, автомобильной промышленности, в крупных тяжелых машинах, станках и сложнейших механизмах, работающих с большой нагрузкой.
Втулка работает следующим образом - за счет мягкости и прочности металла, контактирующие детали не подвергаются износу. Изнашиваются втулки, которые предназначены для замены, являются расходным недорогим материалом.
Бронза, разновидности сплава
Бронзой можно назвать любые сплавы меди с другими металлами, кроме цинка. Исторически известно появление бронзы около 5 тысяч лет до н. э., изначально это был сплав меди с мышьяком. Такое производство не очень выгодно и токсично, поэтому позже в период Бронзового века, стали производить сплав меди с оловом. И на сегодняшний день это основные компоненты бронзы. Для получения того или иного свойства к меди добавляют различные элементы, но до сих пор самые популярные оловянные бронзы.
Сплав меди в бронзе характеризуются параметрами добавляемых элементов. Бронзы, в составе которых есть олово - называют оловянные, остальные безоловянные.
Помимо олова, бронза может быть создана на основе железа, алюминия, марганца, магния, никеля и др. Не относятся к бронзе только сплавы меди с цинком (это латунь).
Детали из бронзы создают путем литья и деформируемым принципом, это прокат или поковка. Бронзы, обрабатываемые при помощи давления, подходят и для литья.
Литейные бронзы с оловом и без олова стандартизуют по гостам ГОСТ 613-79 и ГОСТ 493 - 79.
Вид сплава | Марка (Сплав) |
Бронза для литья оловянная | БрО10Ф1; БрОЗЦ12С5; БрОЗЦ7С5Н1; БрО4Ц8С5; БрО6С6Ц3; БрО8С12; БрО10; БрО10Ц2; БрОЗЦ13С4; БрОЗц8С4Н1; БрО5С25; БрО6Ц6С2Х; БрО8Ц4; БрО10С10; БрО19; БрОЗЦ6С5; БрО6Ц6С3; БрО10С12Н3; БрОЗ.5.Ц7С5; БрОЗЦ7С5Н; БрО4Ц7С5; БрО5Ц6С5; БрО8Н4Ц2 |
Бронза для литья безоловянная | БрА10Ж3; БрА10Мц2Л; БрА9Ж3Л; БрАЮЖ3; БрС6ОН2.5; БрСу6Ф1; БрА10ЖЗМц2; БрА11Ж6Н6; БрА9Ж4; БрАЮЖЗМц2; БрСуЗНЗЦЗС2ОФ; ВБр3; БрА10ЖЗр; БрА7Ж1,5С1,5; БрА9Ж4НМц1; БрАЮЖЗр; БрСу6Н2; БрА10Ж4Н4Л; БрА7Мц15ЖЗН2ц2; БрА9Мц2Л; БрС30; БрСуб12Ф0,3 |
Оловянные и безоловянные сплавы бронзы, подвергающиеся деформации, должны соответствовать параметрами по ГОСТу 5017-2006 и ГОСТу 18175-78
Каждый элемент добавленный в сплав бронзы оказывает влияние на все параметры металла, которые зависят от процентного соотношения, и способа обработки. Выделены основные марки, которые активно используются в промышленности, в производстве, в том числе и в создании расходных элементов таких, как бронзовые втулки скольжения.
Неметаллические материалы для подшипников скольжения
В качестве материалов для подшипников используют пластики, твердые породы натурального дерева, усиленную древесину, резину, графит.
Все перечисленные материалы применяют в сочетании с валами повышенной твердости (> HRC 50). При этом условии неметаллические подшипники обнаруживают высокую износостойкость.
Отличительная особенность неметаллических подшипниковых материалов — низкая теплопроводность. Почти все они лучше работают на воде, чем на масле.
Применение водяной смазки оправдано в тех случаях, когда машина работает с водой (водяные насосы) или в воде (установки гребных винтов, подводный механизированный инструмент и т. д.). В отдельных случаях применяют водяную смазку и на машинах общего назначения. При водяной смазке валы выполняют из закаливающихся коррозионностойких сталей (типа 30Х13, 40Х13). Металлические корпуса подшипников необходимо защищать от коррозии.
Войти
Уже есть аккаунт? Войти в систему.
Последние посетители 0 пользователей онлайн
Главная
Активность
- Создать.
Материалы подшипников скольжения
Различают пластичные (< НВ 50), мягкие (НВ 50—100) и твердые (> НВ 100) подшипниковые сплавы.
К пластичным принадлежат баббиты, свинцовые бронзы, алюминиевые сплавы, серебро; к мягким — бронзы оловянные, оловянно-свинцовые, оловянно-свинцово-цинковые; к твердым — бронзы алюминиево-железные и чугуны.
Для высоконагруженных быстроходных подшипников, рассчитанных на работу в области жидкостной смазки, применяют почти исключительно пластичные сплавы в виде тонких слоев, наносимые на стальные (реже бронзовые) втулки и вкладыши.
Мягкие и твердые сплавы применяют для изготовления подшипников граничной и полужидкостной смазки, работающих при умеренных скоростях.
Свинцовые бронзы
Свинцовые бронзы представляют собой сплавы Сu (40—70%) и Рb (30—60%) с присадками небольших количеств Sn, Zn, Ni, Ag. В СССР наиболее распространены бронзы БрС30 (30% Рb; остальное Сu) и БрО5С25 (5% Sn; 25% Рb; остальное Сu). Применяют также высокосвинцовую никелевую бронзу БрС60Н2,5 (60% Рb; 2,5 Ni).
Свинец практически нерастворим в меди и присутствует в сплавах в виде округлых включений, более или менее равномерно распределенных в медной матрице.
Свинцовые бронзы прочнее и тверже баббитов (НВ 40—60). В отличие от баббитов твердость и прочность их остаются практически постоянными до 200°С. Теплопроводность 0,12—0,13 Вт/(м·°С).
Недостатком свинцовых бронз является пониженная коррозионная стойкость (из-за наличия свободного свинца). Кроме того, свинец вызывает ускоренное окисление масла при эксплуатации.
Прирабатываемость и антифрикционные свойства свинцовой бронзы хуже, чем у баббитов. Подшипники с заливкой свинцовой бронзой требуют особенно малой шероховатости поверхностей трения, исключения перекосов, увеличения жесткости системы вал–подшипник, увеличения прокачки масли и тщательной его фильтрации, а также повышения поверхностной твердости вала (>HRC 50). Зазоры в подшипниках с заливкой свинцовой бронзой делают в среднем на 30—50% больше, чем в подшипниках с баббитовой заливкой. Целесообразно применять масла с низким кислотным числом (< 1 мг КОН/г) и вводить в масло противоокислительные присадки.
Рабочие поверхности подшипников с заливкой свинцовой бронзой обрабатывают тонкой расточкой алмазными или твердосплавными резцами с малыми подачами и большими скоростями резания (10—13 м/сек).
Свинцовую бронзу заливают на вкладыши из низкоуглеродистых сталей слоем толщиной 0,5—0,8 мм при 1050°С в графитных формах. Во избежание ликвации и для получения равномерного и тонкодисперсного распределения свинца в сплаве вкладыши сразу после заливки подвергают интенсивному охлаждению водой, пульверизованной сжатым воздухом.
Разработаны улучшенные составы свинцовых бронз с 30% Рb с присадками Ni (до 5%), Sn (до 25%) и незначительных количеств S и Са. Присадка Ni увеличивает коррозионную стойкость, S и Са вводят для предупреждения ликвации свинца.
Наряду с высокосвинцовыми бронзами для заливки подшипников применяют пластичные (НВ 60—80) бронзы с содержанием 5—7% Рb, 5% Р и 5% Zn.
Пластики
Пластмассовые подшипники применяют преимущественно при полужидкостной смазке (малые частоты вращения, колебательное движение), а также при невозможности поднести к опорам регулярную смазку. Они могут работать с разовой и периодической смазкой, а при небольших нагрузках и окружных скоростях — без смазки. Подшипники из ненабухающих пластиков могут работать на водяной смазке, из химически стойких пластиков — на смазке химически активными жидкостями.
Допустимая удельная нагрузка зависит от твердости и прочности пластика, температуры, окружной скорости, вида и количества подводимой смазки и колеблется в пределах 1—10 МПа.
Для изготовления пластмассовых подшипников чаше всего применяют фенопласты (текстолит), поликарбонаты (дифлон), полиамиды (капрон, найлон), фторопласты (тефлон). Свойства этих пластиков приведены в табл. 32.
Пластики как подшипниковые материалы имеют следующие особенности:
- малая твердость (без наполнителей НВ 5—20);
- низкий модуль упругости (без наполнителей Е = 10 3 —10 4 МПа);
- низкая теплопроводность (0,24—0,36)·10 –3 Вт/(м·°С);
- высокий коэффициент линейного расширения [(50—100)·10 –6 ];
- низкая теплостойкость (по Мартенсу 80—150°С).
Фенопласты и полиамиды набухают в воде (водопоглощение после длительного соприкосновения с водой до 15% по массе). Фторопласты отличаются ползучестью (возникновение остаточных деформаций под длительным воздействием сравнительно небольших напряжений).
Износостойкость и антифрикционные качества пластиков высокие.
Пластики, особенно термопласты, плохо поддаются механической обработке. Полиамидные и поликарбонатные подшипники изготовляют пресс-литьем, фторопластовые — горячим прессованием с приданием окончательных размеров в пресс-формах. Реактопласты (фенопласты) можно обрабатывать твердосплавным инструментом при малых подачах и высоких скоростях резания.
Вследствие низкой теплопроводности, высокого коэффициента линейного расширения и легкой деформируемости пластмассовые подшипники редко выполняют в виде толстостенных втулок. Главная область применения пластиков — нанесение тонких (0,1—0,5 мм) покрытий на металлические поверхности, а также пропитка поверхностного слоя пористых антифрикционных металлов (спеченных бронз).
В тонких слоях отрицательные особенности пластиков почти не влияют на работу подшипника.
Массивные пластмассовые втулки применяют преимущественно при малых диаметрах (менее 30 мм), небольших нагрузках и частоте вращения. С учетом возможности объемных изменений пластика зазор делают в среднем в 2—3 раза больше, чем в металлических подшипниках (ψ = 0,003—0,006). При больших диаметрах для компенсации объемных изменений втулки делают разрезными с прямым, спиральным или шевронным швом. В таких подшипниках относительный зазор может быть доведен до 0,001—0,002.
Прочность пластиков увеличивают, вводя волокнистые или тканевые наполнители, теплопроводность — вводя металлические порошки (Рb, свинцовая бронза).
Текстолитовые подшипники изготовляют из многослойной шифонной ткани, пропитанной бакелитом и спрессованной под давлением
100 МПа при 150—180°С.
Текстолитовые подшипники работают лучше, если торцы тканевых слоев расположены перпендикулярно к поверхности трения. В крупногабаритных подшипниках текстолит устанавливают блоками в металлических кассетах.
Максимальная удельная нагрузка при обильной масляной или водяной смазке 10 МПа. Предельная длительная температура 60—80°С
Капрон и нейлон применяют преимущественно для изготовления подшипников диаметром менее 50 мм, работающих при недостаточной смазке или без смазки.
Для увеличения прочности вводят наполнители (ткань, стекловолокно, графитное волокно).
Полиамиды (как и все термопласты) плохо поддаются механической обработке. Капроновые и найлоновые подшипники изготовляют пресс-литьем в металлических формах с точностью размеров в пределах нескольких сотых миллиметра.
Для увеличения прочности, тепло- и износостойкости и уменьшения водопоглощаемости капроновые подшипники подвергают термической обработке (выдержка 3—4 ч в минеральном масле при 150—180°С, кипячение в течение такого же времени в воде, медленное охлаждение).
Тефлон в чистом виде мало пригоден для изготовления подшипников вследствие мягкости, большого коэффициента линейного расширения, холодной ползучести и полной несмачиваемости маслом. Его применяют только в тонких слоях с обязательной присадкой свинца (до 20% по массе). Тефлон плохо наносится на металлические поверхности. Наилучший способ покрытия — вакуумная пропитка тефлоносвинцовой композицией, диспергированной в жидкости пористого антифрикционного слоя из спеченных бронзовых сплавов. Для улучшения антифрикционных качеств в композицию вводят коллоидальный графит и дисульфид молибдена.
Такие подшипники по антифрикционным качествам не уступают подшипникам с оловянно-баббитовой заливкой, а по пределу выносливости превосходят их. Они могут работать в интервале от –50 до +250°С.
Подшипники, работающие при высоких окружных скоростях, нуждаются в циркуляционной смазке.
Применяют также тонкослойные (0,1—0,2 мм) полиамидные, полиуретановые и эпоксидные покрытия, которые наносят наплавлением, горячим напылением, наклеиванием (эпоксиды), осаждением в псевдосжиженном слое в электростатическом поле.
Баббиты
Баббитами называют сплавы мягких металлов (Sn, Pb, Cd, Sb, Zn), характеризующиеся наличием твердых структурных составляющих в пластичной матрице.
Баббиты отличаются низким коэффициентом трения, пластичностью, хорошей прирабатываемостью и износостойкостью.
Пластичность обеспечивает равномерное распределение нагрузки по несущей поверхности: становится относительно безопасным попадание в подшипники мелких твердых частиц (металлическая пыль, твердые продукты окисления масла), которые впрессовываются в баббит и обезвреживаются.
Недостаток баббитов — низкое сопротивление усталости, особенно при повышенных температурах.
Баббиты могут работать в паре с нормализованными или улучшенными стальными валами (HRC 25—35), но для увеличения долговечности подшипника целесообразнее термически обрабатывать валы до твердости > HRC 50.
Наиболее высокими антифрикционными качествами обладают высокооловянные баббиты , представляющие собой сплавы олова с сурьмой с небольшими присадками меди (вводимой для предупреждения ликвации); структура баббита — твердые кристаллиты SnSb, вкрапленные в пластичную эвтектику.
Основные марки высокооловянных баббитов — Б89, Б83 (цифры указывают содержание олова в процентах).
Теплопроводность их (3,0—4,2)·10 –2 Вт/(м·°C); коэффициент линейного расширения (22—24)·10 6 . Модуль нормальной упругости Е = (5—6)·10 4 МПа. Плотность 7,3 кг/дм 3 . Твердость при 20°С НВ 20—30; предел текучести при сжатии 40—60 МПа. При 100—120°С твердость и предел текучести снижаются примерно вдвое.
Температура плавления оловянистых баббитов: начало 240—250°С, конец 400—420°С.
Баббиты заливают при 450—480°С на вкладыши, предварительно подогретые до 250°С. Наилучшие результаты дает центробежная заливка. Применяют также заливку в кокили и под давлением.
Толщина слоя заливки в подшипниках обычной конструкции 1—З мм. Сопротивление усталости баббитовой заливки повышается с уменьшением толщины слоя заливки, а также с увеличением жесткости системы вкладыш – постель. В последнее время толщину заливки доводят до 0,25—0,4 мм. Еще лучшие результаты даст электролитическое нанесение слоя баббита толщиной 10—20 мкм на подложку из пористой бронзы.
Падение прочности баббитовой заливки при повышенных температурах предупреждают интенсивным масляным охлаждением подшипников. Все это позволяет повысить удельные нагрузки на подшипники с баббитовой заливкой до 10—15 МПа.
В целях экономии дефицитного олова разработаны и внедрены в промышленность низкооловянные баббиты , являющиеся более или менее полноценными заменителями высокооловянистых баббитов.
Свинцово-оловянные баббиты Б16, Б6, БН, БТ состоят на 60—75% из свинца, 5—20% Sn, 10—20% Sb с небольшими присадками Сu, Cd, Ni, Fe. В качестве модификаторов вводят 0,3—1% As.
Антифрикционные качества свинцовых баббитов в условиях полужидкостной смазки ниже, чем высокооловянных. Теплопроводность их (1,2—2,4)·10 –2 Вт/(м·°С), плотность 9,5—10 кг/дм 3 . Твердость и механические свойства примерно такие же, как у оловянных баббитов. Коррозионная стойкость значительно ниже.
В условиях жидкостной смазки разница между свинцовыми и оловянными баббитами малоощутима.
Безоловянные баббиты БК1, БК2 состоят почти целиком из свинца с присадками
1 % Са и Na. Антифрикционные свойства и коррозиестойкость свинцовых баббитов улучшают, вводя в небольших количествах Sr, Ва, Li, Те.
Состав и свойства оловянных и свинцовых баббитов приведены в табл. 28.
Кадмиевые баббиты содержат 90—97% Cd с присадками Сu, Ni, Ag и других металлов, образующих твердые структурные составляющие в пластичной кадмиевой основе. Твердость кадмиевых баббитов НВ 30—40, коэффициент линейного расширения этих баббитов
30·10 –6 1/°С, теплопроводность (8,4—10,0)·10 –2 Вт/(м·°С).
Антифрикционные качества высокие. Недостаток кадмиевых баббитов — низкая коррозионная стойкость.
В биметаллических тонкостенных вкладышах применяют алюминиево-оловянные сплавы , содержащие до 20% Sn. Наиболее распространены сплавы типа АО20—1 (20% Sn; 1% Сu; остальное Аl) и сплав АО6—1 (6% Sn; 1% Сu; 0,5—1% Ni; 1—1,5% Si; остальное AI). Твердость антифрикционных алюминиевых сплавов НВ 35—45; теплопроводность 0,18—0,24 Вт/(м·°С); коэффициент линейного расширения (20—22)·10 –6 1/°С, плотность 2,7 кг/дм 3 .
Алюминиевые сплавы обладают высоким сопротивлением усталости и могут работать при удельных нагрузках до 50 МПа. Склонны к наволакиванию на вал. Необходимы усиленная прокачка масла и применение валов повышенной твердости (> HRC 50).
Для неответственных подшипников применяют дешевые цинкоалюминиевые сплавы типа ЦАМ 10—5 (10% Аl; 5% Сu, остальное Zn) и ЦАМ 9—1,5 (9% Al; 1,5% Сu). Твердость их НВ 60—80; коэффициент линейного расширения (30—32)·10 –6 ; плотность 6,2 кг/дм 3 . Антифрикционные качества цинкоалюминиевых сплавов посредственные. Необходимо применение валов твердостью более HRC 50. Наилучшими качествами обладают нестандартные высокоалюминиевые цинковые сплавы (30—40% Аl; 5—10% Сu; остальное Zn) Твердость их НB 50—60.
Войти
Уже есть аккаунт? Войти в систему.
Подписчики 0Последние посетители 0 пользователей онлайн
Главная
Активность
- Создать.
Металлокерамика для подшипников скольжения
Для подшипников, работающих в условиях граничной смазки, при недостатке или полном отсутствии смазки применяют самосмазывающиеся металлокерамические бронзографитовые и железографитовые композиции, получаемые прессованием и спеканием порошков металла и графита.
Особенностью металлокерамических материалов является микропористость (объем пор 20—40%) и способность впитывать большие количества масла.
Подшипники из этих материалов перед применением пропитывают турбинным маслом при 100—120°С. Этого запаса масла хватает на несколько месяцев работы без смазки. Пропитку необходимо периодически повторять (с предварительным растворением старого масла).
Для увеличения срока службы в конструкции подшипников предусматривают карманы, заполняемые маслом.
Наиболее высокими качествами обладают железографиты, представляющие собой смесь 97—98% железа, полученного электролитическим осаждением, с 2—3% графита и небольшими добавками порошков Сu и Рb. Для увеличения пластичности и ударной вязкости вводят до 7% Ni.
Железографиты более стойки против окисления, чем бронзографитовые композиции.
Порошки железа и графита спрессовывают в формах под давлением 150—200 МПа и спекают при 1050—1100°С в течение 2—3 ч. Окончательные размеры подшипникам придают с помощью калибровочного прессования под давлением 50—80 МПа (точность размеров в пределах сотых долей миллиметра). Механической обработке железографиты поддаются плохо.
При спекании графит соединяется с железом, образуя ферритоцементитные смеси с включениями свободного графита. Металл приобретает структуру серого чугуна, который в зависимости от состава шихты и режима спекания может иметь ферритную, перлитную или цементитную основу (предпочтительна перлитная основа).
Марки отечественных железографитов (первая цифра указывает содержание графита в шихте, вторая — объем пор в %):
ЖГ-3-30 — для легких нагрузок;
ЖГ-7-25 — для средних нагрузок;
ЖГ-3-20 — для тяжелых нагрузок.
Железографитовые подшипники удовлетворительно работают при небольших окружных скоростях и умеренных нагрузках. Кратковременно выдерживают нагрузки до 30 МПа.
Рабочая температура подшипников не должна превышать 50—60°С, иначе поры быстро закупориваются продуктами окислении масла и подшипник теряет свойство самосмазываемости. Необходимо применять валы повышенной твердости (> HRC 55).
Несущая способность пористых подшипников, работающих в гидродинамическом режиме (обильная смазка, высокая частота вращения), снижена по сравнению с массивными подшипниками. Масло в нагруженной области уходит из зазора в поры и перетекает по стенкам втулки отчасти к торцам, где выходит наружу, отчасти в ненагруженную зону, откуда снова поступает в зазор. Таким образом, в стенках втулки образуется непрерывная циркуляция масла, интенсивность которой (а, следовательно, и степень снижения несущей способности) зависит от проницаемости материала подшипника (размеров и относительного объема пор), геометрических размеров втулки (длины и толщины), вязкости масла (температуры подшипника), давления в нагруженной зоне и других факторов.
Помогите определиться с маркой бронзы для втулок.
Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!
Многослойные покрытия
При многослойной заливке тонкий слой оловянного баббита наносят на подложку из антифрикционного сплава толщиной 0,2—0,5 мм. Позволяя использовать ценные качества оловянных баббитов, этот способ резко сокращает расход олова и вместе с тем увеличивает сопротивление усталости и сопротивляемость заливки ударным нагрузкам.
В качестве подложки применяют свинцовые бронзы, алюминиевые сплавы и бронзы. Наилучшие результаты дают пористые подложки из спеченных сплавов Cu–Al и Сu–Ni (60% Сu, 40% Ni), обеспечивающие прочную связь баббита с вкладышем.
Применяют два способа нанесения баббита. При заливке баббит наносят слоем 0,3—0,4 мм. После обработки толщина баббитового слоя составляет 0,15—0,2 мм.
Технологичнее электролитическое осаждение баббита слоем толщиной 15—20 мкм на поверхности подложки, обработанной начисто. При этом способе обязательно применять пористую подложку, которая, будучи пропитана баббитом, образует антифрикционный подслой, обеспечивающий правильную работу подшипника при местном или общем износе поверхностного баббитового слоя.
Иногда в качестве поверхностного слоя применяют свинцовые баббиты. Для предупреждения коррозии на них наносят электролитический слой In толщиной несколько микрометров, который затем подвергают диффузии посредством нагрева при 150°С в течение 2—3 ч.
Выбор сплава подшипников скольжения ДВС
Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!
Войти
Уже есть аккаунт? Войти в систему.
Подписчики 0Последние посетители 0 пользователей онлайн
Главная
Активность
- Создать.
Древесные материалы
Для подшипников применяют пропитанные маслом твердые древесные породы (гваяковое дерево, самшит), как заменители — березу, клен, дубовые породы.
Более высокими качествами обладает усиленная древесина, представляющая собой многослойный березовый шпон (лигнофоли) или крошку (лигностоны), пропитанные фенолоформальдегидными смолами и спрессованные под давлением 30—50 МПа при 150—180°С.
Древесные пластики лучше работают на воде; их применяют для изготовления подшипников гидравлических машин, а также для изготовления низкооборотных, тяжелонагруженных и крупногабаритных подшипников прокатных станов.
Вкладыши из древеснослоистых пластиков набирают из брусков с расположением слоев перпендикулярно к поверхности трения и крепят в металлических корпусах (рис. 693).
Допустимая удельная нагрузка в среднем 2—3 МПа; кратковременная до 15 МПа. Предельная температура 60—70°С.
Важная информация
Мы разместили cookie-файлы на ваше устройство, чтобы помочь сделать этот сайт лучше. Вы можете изменить свои настройки cookie-файлов, или продолжить без изменения настроек.
Бронзы
Бронзы применяют для изготовления подшипников, работающих в области преимущественно полужидкостной смазки при небольших окружных скоростях (подшипники вспомогательных приводов). Благодаря повышенной твердости они выдерживают большие удельные нагрузки.
Наиболее распространены оловянные, оловянно-свинцовые и оловянно-цинково-свинцовые бронзы (табл. 29).
Недостатки антифрикционных чугунов — хрупкость и высокая твердость (НВ 160—250), исключающая возможность самоприработки. Чугунные подшипники чувствительны к перекосам, вызывающим высокие кромочные давления.
Чугунные подшипники применяют с валами высокой поверхностной твердости (> HRC 55). Мягкие антифрикционные чугуны (АЧС-3, АЧВ-2, АЧК-2) могут при небольших нагрузках работать в паре с нормализованными или улучшенными сталями (HRС 25—35).
Вал-втулка. Вопрос по материалу.
Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!
Углеграфиты
Для изготовления подшипников, работающих без смазки при высоких температурах, в химически агрессивных средах, применяют углеграфиты (смеси графита, угля, сажи и кокса на связке из пека и каменноугольных смол, спрессованные и подвергнутые спеканию).
Физико-механические свойства графита: плотность 2,2 кг/дм 3 ; температура плавления 3500°С; разрушающее напряжение 20 МПа; модуль нормальной упругости 8·10 3 МПа; коэффициент линейного расширения ϰ = (0,5—1)· 10–6 1/°С, теплопроводность (6—8)·10 –3 Вт/(м·°С).
Углеграфиты обладают хорошими антифрикционными качествами (коэффициент трения 0,05—0,08), теплостойкостью, химической стойкостью, низким коэффициентом линейного расширения α = (2—3)·10 –6 . Углеграфиты хорошо обрабатываются резанием. Недостатком их является хрупкость.
Для увеличения прочности, теплопроводности и износостойкости в углеграфиты вводят металлические порошки (Cu, Cd, баббит). Хрупкость уменьшают пропиткой фенолоформальдегидами, силоксанами и тефлоном (графитопласты).
Резины
Резиновые подшипники представляют собой металлические втулки, облицованные натуральными или синтетическими каучуками (хлор- и фторкаучуки, силиконовые и полисульфидные каучуки). Наилучшими для подшипников скольжения являются фторкаучуки.
Твердость и эластичность каучуков можно менять в широких пределах изменением состава и технологии изготовления.
Резиновые подшипники применяют почти исключительно с водяной смазкой. Их используют в гидравлических машинах, для подводного механизированного инструмента, в концевых установках гребных валов (дейдвудные подшипник). Металлические корпуса подшипников выполняют из коррозионностойких сталей или защищают от коррозии нанесением полимерных пленок.
Для удаления грязи на рабочей поверхности подшипников предусматривают сквозные канавки (рис. 694).
Коэффициент трения стали по влажной резине f = 0,05—0,1. При достаточной прокачке воды и высоких окружных скоростях (10—20 м/с) можно, несмотря на малую вязкость воды, создать чисто жидкостную смазку (f = 0,002—0,003).
Подшипники из мягких резин применяют, когда важно обеспечить самоустанавливаемость вала, а также амортизацию его колебаний. Несущая способность их незначительна (k = 0,1—0,2 МПа).
Подшипники из твердых резин выдерживают нагрузки до 3—5 МПа.
Читайте также: