Цифра ы в марке сплава сч25 означает
Серый чугун, широко применяется в машиностроении и представляет собой не сплошной металл, а пористую металлическую губку - сплав железа с графитом, поры которой заполнены рыхлым неметаллическим веществом — графитом. Чугун весьма хрупок. Его относительное удлинение при разрыве очень низко. Он разбивается на куски ударом.
Механические свойства серых чугунов зависят от свойств металлической основы и в основном, от количества, формы и размеров графитных включений. Перлитная основа обеспечивает наибольшие значения показателей прочности и износостойкости. Марки серых чугунов согласно ГОСТ 1412—85 состоят из букв "СЧ" и цифр, соответствующих минимальному пределу прочности при растяжении Ств, МПа / 10. Чугун СЧ10 — ферритный; СЧ15, СЧ18, СЧ20 — ферритно-перлитные чугуны, начиная с СЧ25 — перлитные чугуны.
На долю серого чугуна с пластинчатым графитом приходится около 80 % общего производства чугунных отливок.
Серый чугун отличается высокими литейными свойствами (для него свойственна низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и поэтому служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров.
Серый чугун весьма склонен к образованию трещин при сварке, и борьбе с трещинами приходится уделять особое внимание при сварке.
Часто в процессе сварки происходит отбеливание чугуна, что придает ему высокую твердость и хрупкость в зоне сварки и делает его совершенно непригодным для механической обработки после сварки.
Встречаются сорта чугуна, практически совершенно не поддающиеся сварке, например так называемый горелый серый чугун, подвергавшийся длительному воздействию высокой температуры, кислот, пара и т. п.
Влияние химического свойства на структуру и физико-механические свойства серого чугуна. Влияние основных элементов на графитизацию чугуна :
Углерод. Повышение содержания углерода в сером чугуне приводит в общем к уменьшению прочности, модуля упругости и твердости и к увеличению пластичности и циклической вязкости. Нижний предел содержания углерода в чугуне с повышенной прочностью ограничивается снижением литейных свойств чугуна. Обычно содержание углерода в сером чугуне колеблется в пределах 2,4—4,2%.
Кремний с точки зрения его влияния на графитизацию серого чугуна является аналогом углерода. Однако его влияние на механические свойства принципиально отлично от влияния углерода. Кремний образует с ферритом твердый раствор и повышает твердость и прочность феррита, снижая одновременно его вязкость. Суммарное (графитизирующее и легирующее) воздействие кремния может существенно изменять механические свойства серого чугуна. Обычно повышение содержания кремния связано с ростом величины графитовых включений и повышением доли феррита в матрице; прочность серого чугуна при этом снижается. При высоком содержании кремния снижается пластичность серого чугуна за счет образования силикоферрита. Твердость серого чугуна с увеличением содержания кремния сначала понижается вследствие графитизации, а затем увеличивается за счет образования силикоферрита.
Влияние углерода и кремния на механические свойства серого чугуна обычно рассматривают совместно. В простейшем случае учитывают суммарное содержание углерода и кремния, более точным является способ определения углеродного эквивалента или степени эвтектичности.
Сера. Ослабляя границы зерен, эвтектика Fe—FeS снижает прочность и пластичность чугуна. С другой стороны, сера способствует перлитизации структуры и может повышать прочность и твердость ферритного или феррито-перлитного серого чугуна. Кроме того, сера повышает износостойкость чугуна.
Марганец тормозит графитизацию, легирует феррит, способствует размельчению перлита и иногда образованию свободных карбидов. Влияние марганца на механические свойства чугуна показано на рис. 38. Марганец, взаимодействуя с серой, нейтрализует ее вредное воздействие, поэтому выбор количества марганца должен быть увязан с содержанием серы. При выплавке малосернистого чугуна содержание марганца следует снижать.
Фосфор легирует феррит, способствует размельчению эвтектического зерна и образованию включений фосфидной эвтектики. С повышением содержания фосфора увеличивается твердость и износостойкость чугуна.
Хром. С увеличением содержания хрома растет прочность и твердость чугунных отливок; нарастание прочности происходит быстрее у модифицированного чугуна. Хром тормозит графитизацию и является активным карбидообразующим элементом. На рис. 40 показано изменение твердости в отливках с различной толщиной стенки при изменении содержания хрома. Рост твердости в тонких сечениях с увеличением содержания хрома происходит более интенсивно, чем в толстых.
Никель благоприятно влияет на выравнивание механических свойств чугуна в отливках с различной толщиной стенки. В чугуне с содержанием никеля несколько больше 3% прочность почти не изменяется при толщине стенок от 22 до 88 мм. Каждый процент никеля повышает твердость серого чугуна приблизительно на 10 НВ. С увеличением содержания никеля возрастает коррозионная устойчивость чугуна, особенно в щелочных средах; улучшается обрабатываемость и, кроме того, повышается герметичность, так как при высокой эвтектичности графит приобретает благоприятную форму, а величина зерна уменьшается.
Молибден является интенсивным карбидообразующим элементом и тормозит графитизацию. Прочность и твердость чугуна с увеличением содержания молибдена повышается. С увеличением содержания молибдена прочность чугуна возрастает линейно: 1% Мо повышает прочность примерно на 1 кГ/мм 2 при любой степени эвтектичности от 0,8 до 1,0. Ударная вязкость при этом не падает, а даже несколько увеличивается. Молибден увеличивает прочность чугуна при повышенных температурах. Максимум прочности достигается при содержании 1,9% Мо, затем происходит падение свойств из-за образования ледебурита. Повышение твердости вследствие повышения однородности не сопровождается ухудшением обрабатываемости. Молибден повышает также сопротивление чугуна износу и его росто-устойчивость.
Медь оказывает на серый чугун двойное действие: способствует графитизации при затвердевании и образованию перлита при эвтектоид-ном превращении. С увеличением содержания меди увеличивается жидкотекучесть и уменьшается усадка. При увеличении содержания меди повышается модуль упругости чугуна, прочность и твердость.
Отмечается повышение модуля упругости с 13000 до 20000 кГ/мм 2 предел прочности при изгибе — с 35 до 67 кГ/мм 2 твердости — с 137 до 20 НВ, причем при 2,6 % Си она оставалась равномерной по всему сечению отливок.
Медистый чугун обрабатывается лучше нелегированного. Добавка меди к чугуну, легированному карбидообразующими элементами (хромом, молибденом, ванадием), понижает его твердость и улучшает обрабатываемость, а также может повышать прочность, снижая охрупчивающее действие карбидов. Вследствие положительного влияния меди на образование тонкопластинчатого перлита повышается коррозионная стойкость медистого чугуна во многих средах.
Повышение предела прочности при растяжении медистого чугуна происходит независимо от его эвтектичности; увеличение твердости зависит от эвтектичности (при низкой эвтектичности твердость возрастает интенсивнее).
Олово при содержании до 0,1% повышает твердость, а также прочность и модуль упругости серого чугуна. Однако одновременно с повышением твердости увеличивается склонность чугуна к отбелу. Поэтому во избежание отбела содержание олова не должно превышать 0,05—0,08%.
Олово как легирующий элемент рекомендуется использовать вместо хрома для устранения больших колебаний в твердости по различным сечениям отливок.
Олово заметно понижает рост чугуна и образование окалины.
Сурьма в сером чугуне препятствует выделению свободного феррита подобно олову, но более эффективно. Влияние сурьмы обнаруживается при ее содержании 0,015%, а добавки 0,03—0,08% Sb обеспечивают эффективное легирование чугуна. Прочность чугуна увеличивается примерно при содержании в нем до 0,1% Sb, пока не будет достигнута чисто перлитная структура, а при дальнейшем увеличении содержания сурьмы снижается прочность. Сурьма влияет только на кристаллизацию металлической основы чугуна, не изменяя ни формы, ни распределения графитовых включений. Ударная вязкость чугуна при легировании сурьмой снижается.
С увеличением содержания сурьмы заметно снижается чувствительность чугуна к толщине стенки. Влияние сурьмы на механические свойства приведено в табл. 26.
Бор повышает прочность чугуна, способствуя выделению измельченных карбидов. При чрезвычайно малых добавках бор видимо оказывает на чугун графитизирующее влияние и несколько повышает стрелу прогиба и ударную вязкость; при больших содержаниях бора повышается прочность и снижается пластичность и вязкость чугуна.
При подобранном соотношении бора и кремния в широком пределе толщин стенок и эвтектичности чугуна получается своеобразная половинчатая структура с равномерно распределенной цементитной сеткой на перлитной основе. В зависимости от количества введенного бора возможно получение твердости до 260 НВ. Серый чугун с тонкой цементитной сеткой хорошо обрабатывается. Аналогичное влияние на свойства чугуна оказывают комплексные добавки бора и алюминия. Путем легирования бором можно значительно повысить износостойкость чугуна без опасения понизить его обрабатываемость.
Наиболее широкое применение находит комплексное легирование с введением в чугун нескольких элементов одновременно.
Сварку чугуна применяют для исправления различных литейных дефектов, в ремонтных работах при восстановлении изношенных и разрушившихся деталей машин, а также при изготовлении комбинированных деталей машин из чугуна и из чугуна в сочетании с другими сплавами.
Основными способами сварки чугуна являются: газовая, электродуговая и электроконтактная точечная, применяемая для соединения чугунных деталей с медными, бронзовыми и латунными деталями.
Служебные свойства серого чугуна. Износостойкость определяется скоростью потери металла, выраженной в весовом или линейном измерениях.
Основные виды износа классифицируются следующим образом: абразивный, при сухом трении, при трении со смазкой, эрозионно-кавитационный.
Износостойкость серого чугуна зависит прежде всего от его структуры и твердости. Чем меньше общее количество графита и размеры графитовых включений, тем большей износостойкостью обладает чугун. Наличие феррита в структуре оказывается полезным только при сравнительно мягком контртеле, при малых давлениях и скоростях, в условиях трения качения при непрерывном одностороннем вращении, а также при возможных перекосах трущейся пары в процессе приработки. В большинстве случаев значительные преимущества имеет перлитная структура, особенно при трении скольжения и возвратно-поступательном движении.
В подавляющем большинстве случаев износостойкость находится в прямой зависимости от твердости чугуна и повышается с ростом твердости последнего. Особенно высокую твердость должны иметь детали, работающие в условиях ударно-абразивного износа.
Износостойкость серого чугуна может быть существенно повышена за счет применения легирования (рис. 50).
Герметичность оценивают по скорости утечки, падению давления или по граничным параметрам (толщина стенки, давление), при которых обнаруживается течь.
Требования герметичности предъявляются к чугунным деталям, работающим под давлением жидкости или газа. Давление жидкости может быть равно атмосферному (картеры, открытые резервуары). Высокой герметичностью должны обладать отливки насосов и компрессоров, трубопроводов, арматуры, тормозной пневматики, гидроприводов и др.
Основным фактором, определяющим герметичность отливок, является наличие раковин и микропористости. Главную роль играет «транзитная», т. е. сообщающаяся между собой микропористость.
Детали, относящиеся к первому классу — это детали, несущие высокие нагрузки: кронштейны, зубчатые колеса. Детали, к которым предъявляются требования по стабильности геометрической формы и работающие на износ при трении скольжения в условиях большой загрязненности смазки, а также при трении качения: станины с направляющими скольжения токарно-винторезных, револьверных, горизонтально-расточных, фрезерных и других станков, а также коордннатно-расточных, шлифовальных с недостаточной защитой направляющих; станины координатно-расточных, резьбошлифовальных, шлифовальных станков с направляющими качения; ползуны, поперечины, накладные направляющие; шабровочные и поверочные плиты и линейки. Детали, к которым предъявляются требования в части герметичности при давлении свыше 80 кГ/см а : детали гидро- и пневмоаппаратуры — цилиндры, корпусы насосов, золотников.
К отливкам первого класса, работающим в условиях износа рабочих поверхностей (направляющих), предъявляются дополнительные требования в отношении твердости и микроструктуры. Твердость направляющих на глубине 3 /4 припуска на механическую обработку должна быть не ниже 180 НВ. Для тяжелых отливок весом более 7000 кг или при толщине направляющих более 100 мм твердость может быть снижена до 170 НВ. Такое же снижение твердости допускается, если направляющие скольжения хорошо защищены от загрязнения (не выходят из контакта с направляющими сопряженных деталей).
Микроструктура отливок развесом до 4000 кг при толщине направляющих до 60 мм должна состоять из мелкопластинчатого высокодисперсного перлита в количестве не менее 98% и мелких пластинок графита размером от 10 до 125 мкм графитовые включения, изолированные или в виде колоний малой степени изолированности. При весе отливок от 4000 до 10 000 кг или при толщине литых направляющих от 60 до 100 мм перлита должно быть не менее 95%. Для особо тяжелых станочных отливок более 10 000 кГ или при толщине направляющих более 100 мм перлит может быть от среднепластинчатого до мелкопластинчатого с содержанием в структуре более 90%, а графит размером от 10 до 250 мкм.
Для наиболее ответственных деталей первого класса: базовые, корпусные и другие детали высокой прочности и высокой износостойкости прецизионных станков, т. е. станков повышенной, высокой и особо высокой точности предпочтительно применение чугуна марки СЧ 32-52.
Высокие показатели прочностных свойств и твердости рабочих поверхностей достигаются за счет легирования чугуна никелем, хромом и молибденом.
Отливки второго класса — детали, к которым предъявляются требования по стабильности геометрической формы и не работающие на износ: станины и салазки с накладными направляющими револьверных, токарно-винторезных станков и т.д.
Более подробно применение серого чугуна и других типов чугуна рассмотрено в статье применение чугуна.
Автор: Администрация
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
s в | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | - температура, при которой получены свойства, Град | |
s T | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м 3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σ t Т | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Чугун серый
Серый чугун широко применяется в машиностроении. Такое название он получил по серому цвету излома, обусловленному наличием в структуре чугуна свободного углерода в виде графита. По виду металлической основы различают серые чугуны перлитные, перлитно-ферритные и ферритные.
Таблица 1. Чугуны серые литейные, их основные свойства и применение
Графит обладает низкими механическими свойствами. Он нарушает целостность металлической основы. Располагаясь между зернами металлической основы, графит ослабляет связь между ними. Поэтому серый чугун плохо сопротивляется растяжению и имеет очень низкую пластичность и вязкость. Чем крупнее и прямолинейнее графитовые включения, тем хуже механические свойства чугуна. Твердость серого чугуна, а также его сопротивление сжатию близки к показателям стали, имеющей такую же структуру, как у металлической основы чугуна.
Графит оказывает и некоторое положительное влияние на свойства чугуна, в частности, он повышает его износостойкость, действуя аналогично смазке, повышает обрабатываемость резанием, так как делает стружку ломкой, способствует гашению вибраций изделий, уменьшает усадку при изготовлении отливок.
Основные свойства серого чугуна и его применение приведены в таблице 1.
3. МЕТОДЫ ИСПЫТАНИЙ
3.4. При применении термической обработки отливок заготовки для определения механических свойств должны проходить термообработку вместе с отливками.
Допускается использовать заготовки в литом состоянии (без термообработки) при применении низкотемпературной термообработки для снятия линейных напряжений в отливках.
3.5. При получении неудовлетворительных результатов испытаний проводят повторные испытания на двух образцах.
Образцы считают выдержавшими испытания, если механические свойства каждого из них соответствуют требованиям настоящего стандарта.
Чугун. Марки, свойства и применение чугунов
Чугун обладает высокими литейными свойствами, поэтому широко используется в литейном производстве в качестве конструкционного материала. Он хорошо обрабатывается резанием. Из чугуна, имеющего невысокий коэффициент трения, изготовляют подшипники скольжения. Специально обработанный чугун (высокопрочный) по показателям качества успешно конкурирует со стальным литьем и кованой сталью.
Недостаточная прочность и большая хрупкость чугуна объясняются наличием в нем крупных включений углерода в виде графита.
Введение в жидкий чугун небольшого количества магния и церия изменили форму графита, он стал шаровидным. Чугун приобрел прочность и утратил хрупкость. Такой чугун (его называют высокопрочным) по-своему качеству не уступает конструкционным углеродистым сталям. Стойкость деталей, изготовленных из этого чугуна, увеличилась почти в три раза.
1. МАРКИ
1.1. Для изготовления отливок предусматриваются следующие марки чугуна: СЧ10; СЧ15; СЧ20; СЧ25; СЧ30; СЧ35.
По требованию потребителя для изготовления отливок допускаются марки чугуна СЧ18, СЧ21 и СЧ24.
1.2. Условное обозначение марки включает буквы СЧ - серый чугун и цифровое обозначение величины минимального временного сопротивления при растяжении в МПа·10.
Пример условного обозначения:
СЧ15 ГОСТ 1412-85
Чугун серый
Серый чугун, широко применяется в машиностроении и представляет собой не сплошной металл, а пористую металлическую губку - сплав железа с графитом, поры которой заполнены рыхлым неметаллическим веществом — графитом. Чугун весьма хрупок. Его относительное удлинение при разрыве очень низко. Он разбивается на куски ударом.
Механические свойства серых чугунов зависят от свойств металлической основы и в основном, от количества, формы и размеров графитных включений. Перлитная основа обеспечивает наибольшие значения показателей прочности и износостойкости. Марки серых чугунов согласно ГОСТ 1412—85 состоят из букв "СЧ" и цифр, соответствующих минимальному пределу прочности при растяжении Ств, МПа / 10. Чугун СЧ10 — ферритный; СЧ15, СЧ18, СЧ20 — ферритно-перлитные чугуны, начиная с СЧ25 — перлитные чугуны.
На долю серого чугуна с пластинчатым графитом приходится около 80 % общего производства чугунных отливок.
Серый чугун отличается высокими литейными свойствами (для него свойственна низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и поэтому служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров.
Серый чугун весьма склонен к образованию трещин при сварке, и борьбе с трещинами приходится уделять особое внимание при сварке.
Часто в процессе сварки происходит отбеливание чугуна, что придает ему высокую твердость и хрупкость в зоне сварки и делает его совершенно непригодным для механической обработки после сварки.
Встречаются сорта чугуна, практически совершенно не поддающиеся сварке, например так называемый горелый серый чугун, подвергавшийся длительному воздействию высокой температуры, кислот, пара и т. п.
Влияние химического свойства на структуру и физико-механические свойства серого чугуна. Влияние основных элементов на графитизацию чугуна :
Углерод. Повышение содержания углерода в сером чугуне приводит в общем к уменьшению прочности, модуля упругости и твердости и к увеличению пластичности и циклической вязкости. Нижний предел содержания углерода в чугуне с повышенной прочностью ограничивается снижением литейных свойств чугуна. Обычно содержание углерода в сером чугуне колеблется в пределах 2,4—4,2%.
Кремний с точки зрения его влияния на графитизацию серого чугуна является аналогом углерода. Однако его влияние на механические свойства принципиально отлично от влияния углерода. Кремний образует с ферритом твердый раствор и повышает твердость и прочность феррита, снижая одновременно его вязкость. Суммарное (графитизирующее и легирующее) воздействие кремния может существенно изменять механические свойства серого чугуна. Обычно повышение содержания кремния связано с ростом величины графитовых включений и повышением доли феррита в матрице; прочность серого чугуна при этом снижается. При высоком содержании кремния снижается пластичность серого чугуна за счет образования силикоферрита. Твердость серого чугуна с увеличением содержания кремния сначала понижается вследствие графитизации, а затем увеличивается за счет образования силикоферрита.
Влияние углерода и кремния на механические свойства серого чугуна обычно рассматривают совместно. В простейшем случае учитывают суммарное содержание углерода и кремния, более точным является способ определения углеродного эквивалента или степени эвтектичности.
Сера. Ослабляя границы зерен, эвтектика Fe—FeS снижает прочность и пластичность чугуна. С другой стороны, сера способствует перлитизации структуры и может повышать прочность и твердость ферритного или феррито-перлитного серого чугуна. Кроме того, сера повышает износостойкость чугуна.
Марганец тормозит графитизацию, легирует феррит, способствует размельчению перлита и иногда образованию свободных карбидов. Влияние марганца на механические свойства чугуна показано на рис. 38. Марганец, взаимодействуя с серой, нейтрализует ее вредное воздействие, поэтому выбор количества марганца должен быть увязан с содержанием серы. При выплавке малосернистого чугуна содержание марганца следует снижать.
Фосфор легирует феррит, способствует размельчению эвтектического зерна и образованию включений фосфидной эвтектики. С повышением содержания фосфора увеличивается твердость и износостойкость чугуна.
Хром. С увеличением содержания хрома растет прочность и твердость чугунных отливок; нарастание прочности происходит быстрее у модифицированного чугуна. Хром тормозит графитизацию и является активным карбидообразующим элементом. На рис. 40 показано изменение твердости в отливках с различной толщиной стенки при изменении содержания хрома. Рост твердости в тонких сечениях с увеличением содержания хрома происходит более интенсивно, чем в толстых.
Никель благоприятно влияет на выравнивание механических свойств чугуна в отливках с различной толщиной стенки. В чугуне с содержанием никеля несколько больше 3% прочность почти не изменяется при толщине стенок от 22 до 88 мм. Каждый процент никеля повышает твердость серого чугуна приблизительно на 10 НВ. С увеличением содержания никеля возрастает коррозионная устойчивость чугуна, особенно в щелочных средах; улучшается обрабатываемость и, кроме того, повышается герметичность, так как при высокой эвтектичности графит приобретает благоприятную форму, а величина зерна уменьшается.
Молибден является интенсивным карбидообразующим элементом и тормозит графитизацию. Прочность и твердость чугуна с увеличением содержания молибдена повышается. С увеличением содержания молибдена прочность чугуна возрастает линейно: 1% Мо повышает прочность примерно на 1 кГ/мм 2 при любой степени эвтектичности от 0,8 до 1,0. Ударная вязкость при этом не падает, а даже несколько увеличивается. Молибден увеличивает прочность чугуна при повышенных температурах. Максимум прочности достигается при содержании 1,9% Мо, затем происходит падение свойств из-за образования ледебурита. Повышение твердости вследствие повышения однородности не сопровождается ухудшением обрабатываемости. Молибден повышает также сопротивление чугуна износу и его росто-устойчивость.
Медь оказывает на серый чугун двойное действие: способствует графитизации при затвердевании и образованию перлита при эвтектоид-ном превращении. С увеличением содержания меди увеличивается жидкотекучесть и уменьшается усадка. При увеличении содержания меди повышается модуль упругости чугуна, прочность и твердость.
Отмечается повышение модуля упругости с 13000 до 20000 кГ/мм 2 предел прочности при изгибе — с 35 до 67 кГ/мм 2 твердости — с 137 до 20 НВ, причем при 2,6 % Си она оставалась равномерной по всему сечению отливок.
Медистый чугун обрабатывается лучше нелегированного. Добавка меди к чугуну, легированному карбидообразующими элементами (хромом, молибденом, ванадием), понижает его твердость и улучшает обрабатываемость, а также может повышать прочность, снижая охрупчивающее действие карбидов. Вследствие положительного влияния меди на образование тонкопластинчатого перлита повышается коррозионная стойкость медистого чугуна во многих средах.
Повышение предела прочности при растяжении медистого чугуна происходит независимо от его эвтектичности; увеличение твердости зависит от эвтектичности (при низкой эвтектичности твердость возрастает интенсивнее).
Олово при содержании до 0,1% повышает твердость, а также прочность и модуль упругости серого чугуна. Однако одновременно с повышением твердости увеличивается склонность чугуна к отбелу. Поэтому во избежание отбела содержание олова не должно превышать 0,05—0,08%.
Олово как легирующий элемент рекомендуется использовать вместо хрома для устранения больших колебаний в твердости по различным сечениям отливок.
Олово заметно понижает рост чугуна и образование окалины.
Сурьма в сером чугуне препятствует выделению свободного феррита подобно олову, но более эффективно. Влияние сурьмы обнаруживается при ее содержании 0,015%, а добавки 0,03—0,08% Sb обеспечивают эффективное легирование чугуна. Прочность чугуна увеличивается примерно при содержании в нем до 0,1% Sb, пока не будет достигнута чисто перлитная структура, а при дальнейшем увеличении содержания сурьмы снижается прочность. Сурьма влияет только на кристаллизацию металлической основы чугуна, не изменяя ни формы, ни распределения графитовых включений. Ударная вязкость чугуна при легировании сурьмой снижается.
С увеличением содержания сурьмы заметно снижается чувствительность чугуна к толщине стенки. Влияние сурьмы на механические свойства приведено в табл. 26.
Бор повышает прочность чугуна, способствуя выделению измельченных карбидов. При чрезвычайно малых добавках бор видимо оказывает на чугун графитизирующее влияние и несколько повышает стрелу прогиба и ударную вязкость; при больших содержаниях бора повышается прочность и снижается пластичность и вязкость чугуна.
При подобранном соотношении бора и кремния в широком пределе толщин стенок и эвтектичности чугуна получается своеобразная половинчатая структура с равномерно распределенной цементитной сеткой на перлитной основе. В зависимости от количества введенного бора возможно получение твердости до 260 НВ. Серый чугун с тонкой цементитной сеткой хорошо обрабатывается. Аналогичное влияние на свойства чугуна оказывают комплексные добавки бора и алюминия. Путем легирования бором можно значительно повысить износостойкость чугуна без опасения понизить его обрабатываемость.
Наиболее широкое применение находит комплексное легирование с введением в чугун нескольких элементов одновременно.
Сварку чугуна применяют для исправления различных литейных дефектов, в ремонтных работах при восстановлении изношенных и разрушившихся деталей машин, а также при изготовлении комбинированных деталей машин из чугуна и из чугуна в сочетании с другими сплавами.
Основными способами сварки чугуна являются: газовая, электродуговая и электроконтактная точечная, применяемая для соединения чугунных деталей с медными, бронзовыми и латунными деталями.
Служебные свойства серого чугуна. Износостойкость определяется скоростью потери металла, выраженной в весовом или линейном измерениях.
Основные виды износа классифицируются следующим образом: абразивный, при сухом трении, при трении со смазкой, эрозионно-кавитационный.
Износостойкость серого чугуна зависит прежде всего от его структуры и твердости. Чем меньше общее количество графита и размеры графитовых включений, тем большей износостойкостью обладает чугун. Наличие феррита в структуре оказывается полезным только при сравнительно мягком контртеле, при малых давлениях и скоростях, в условиях трения качения при непрерывном одностороннем вращении, а также при возможных перекосах трущейся пары в процессе приработки. В большинстве случаев значительные преимущества имеет перлитная структура, особенно при трении скольжения и возвратно-поступательном движении.
В подавляющем большинстве случаев износостойкость находится в прямой зависимости от твердости чугуна и повышается с ростом твердости последнего. Особенно высокую твердость должны иметь детали, работающие в условиях ударно-абразивного износа.
Износостойкость серого чугуна может быть существенно повышена за счет применения легирования (рис. 50).
Герметичность оценивают по скорости утечки, падению давления или по граничным параметрам (толщина стенки, давление), при которых обнаруживается течь.
Требования герметичности предъявляются к чугунным деталям, работающим под давлением жидкости или газа. Давление жидкости может быть равно атмосферному (картеры, открытые резервуары). Высокой герметичностью должны обладать отливки насосов и компрессоров, трубопроводов, арматуры, тормозной пневматики, гидроприводов и др.
Основным фактором, определяющим герметичность отливок, является наличие раковин и микропористости. Главную роль играет «транзитная», т. е. сообщающаяся между собой микропористость.
Детали, относящиеся к первому классу — это детали, несущие высокие нагрузки: кронштейны, зубчатые колеса. Детали, к которым предъявляются требования по стабильности геометрической формы и работающие на износ при трении скольжения в условиях большой загрязненности смазки, а также при трении качения: станины с направляющими скольжения токарно-винторезных, револьверных, горизонтально-расточных, фрезерных и других станков, а также коордннатно-расточных, шлифовальных с недостаточной защитой направляющих; станины координатно-расточных, резьбошлифовальных, шлифовальных станков с направляющими качения; ползуны, поперечины, накладные направляющие; шабровочные и поверочные плиты и линейки. Детали, к которым предъявляются требования в части герметичности при давлении свыше 80 кГ/см а : детали гидро- и пневмоаппаратуры — цилиндры, корпусы насосов, золотников.
К отливкам первого класса, работающим в условиях износа рабочих поверхностей (направляющих), предъявляются дополнительные требования в отношении твердости и микроструктуры. Твердость направляющих на глубине 3 /4 припуска на механическую обработку должна быть не ниже 180 НВ. Для тяжелых отливок весом более 7000 кг или при толщине направляющих более 100 мм твердость может быть снижена до 170 НВ. Такое же снижение твердости допускается, если направляющие скольжения хорошо защищены от загрязнения (не выходят из контакта с направляющими сопряженных деталей).
Микроструктура отливок развесом до 4000 кг при толщине направляющих до 60 мм должна состоять из мелкопластинчатого высокодисперсного перлита в количестве не менее 98% и мелких пластинок графита размером от 10 до 125 мкм графитовые включения, изолированные или в виде колоний малой степени изолированности. При весе отливок от 4000 до 10 000 кг или при толщине литых направляющих от 60 до 100 мм перлита должно быть не менее 95%. Для особо тяжелых станочных отливок более 10 000 кГ или при толщине направляющих более 100 мм перлит может быть от среднепластинчатого до мелкопластинчатого с содержанием в структуре более 90%, а графит размером от 10 до 250 мкм.
Для наиболее ответственных деталей первого класса: базовые, корпусные и другие детали высокой прочности и высокой износостойкости прецизионных станков, т. е. станков повышенной, высокой и особо высокой точности предпочтительно применение чугуна марки СЧ 32-52.
Высокие показатели прочностных свойств и твердости рабочих поверхностей достигаются за счет легирования чугуна никелем, хромом и молибденом.
Отливки второго класса — детали, к которым предъявляются требования по стабильности геометрической формы и не работающие на износ: станины и салазки с накладными направляющими револьверных, токарно-винторезных станков и т.д.
Более подробно применение серого чугуна и других типов чугуна рассмотрено в статье применение чугуна.
ПРИЛОЖЕНИЕ 1
Справочное
Ориентировочные данные о временном сопротивлении
при растяжении и твердости в стенках отливки различного сечения
Чугун высокопрочный с шаровидным графитом
Высокопрочный чугун получают путем введения магния (до 0,9%) и церия (до 0,05%) в жидкий серый чугун перед разливкой его в формы. Основная часть этих модификаторов испаряется, окисляется и переходит в шлак, так что в твердом металле обнаруживается не более 0,01% этих элементов. Магний и церий активно удаляют из чугуна серу. Но главная роль их заключается в том, чтобы изменить чешуйчато-пластинчатую форму графита на шаровидную. После модифицирования чугуна магнием или церием в ковш добавляют 75%-ный ферросилиций (сплав железа с кремнием). В отличие от модифицированного серого чугуна высокопрочный чугун имеет более высокое содержание углерода и кремния и пониженное содержание марганца.
Металлическая основа высокопрочного чугуна состоит из феррита и перлита или только из перлита. В этом чугуне сочетаются ценные свойства стали и чугуна. Он обладает сравнительно высокой прочностью при достаточной пластичности и вязкости. Высокопрочный чугун с успехом заменяет стальное литье и даже стальные поковки, что дает большой экономический эффект. Изделия из высокопрочного чугуна благодаря его повышенной износостойкости могут работать в условиях трения. Высокопрочный чугун лучше, чем серый, сохраняет свою прочность при нагреве, поэтому может применяться для работы при температурах до 400°С (серый чугун выдерживает температуру до 250°С).
Из высокопрочных чугунов изготовляют многие детали (в том числе фасонные), которые ранее получали из стали, базовые и корпусные детали повышенной прочности (корпуса и станины станков, крупные планшайбы, гильзы, каретки, цилиндры, кронштейны, зубчатые колеса, накладные направляющие станков и детали с поверхностной закалкой). Они заменяют стали Сталь 20Л, 25Л, ЗОЛ и 35Л.
Чугун СЧ25
Механические свойства чугуна СЧ25 (и серых чугунов): В целом наблюдается закономерность, чем меньше графита, мельче и благоприятнее по распределению его включения, дисперснее перлит, мельче эвтектическое зерно, тем выше его свойства. Однако если σв, T-1, тв, ψ зависят как от графита, так и металлической основы, то Е — главным образом от графита, а НВ — почти полностью от структуры металлической основы. Малая чувствительность серого чугуна к надрезам иллюстрируется следующими данными по сопротивлению усталости чугуна при вибрации:
Для различных групп отливок путем варьирования содержания химического состава основных элементов и легирования чугуна небольшими добавками обеспечивают комплекс оптимальных эксплуатационных свойств. Так, для блоков цилиндров карбюраторных двигателей чугун легируют Сr (0,2— 0,5 %) и Ni (до 0,2 %), а для автомобильных дизелей дополнительно Сu (0,2—0,4 %). Необходимые свойства для тракторных двигателей обеспечивают повышенным (до 1,4%) содержанием Мn.
Гильзы карбюраторных двигателей изготовляют из чугуна СЧ25 с обычным (0,14%) и повышенным (0,17— 0,22 %) содержанием фосфора.
Для ребристых цилиндров двигателей воздушного охлаждения используют чугун, легированный Sb (0,5— 0,08%), Сг (0,4—0,6%) и Ni (0,1— 0,3%) или Ni (0,65 %) и Р (0,65— 0,75 %).
В станкостроении для повышения твердости средних по развесу отливок наряду с модифицированием чугуна FeSi и SiCa применяют ковшевое легирование Си (0,3—0,4 %) и Сr (0,2—0,3 %).
При толщине стенки более 15—20 мм используют легирование Сu (0,8—1,0 %) и Сr (0,3-0,5 %). Для средних и тяжелых отливок, в которых допускается наличие в микроструктуре карбидных включений, применяют комплексное легирование чугуна Мо (0,3-0,8 %), Ni (0,7-1,2 %) и Сr (0,2—0,6 %). В отдельных случаях для повышения твердости применяют легирование В (0,04 %) совместно с Сu (0,4—0,6 %) или Ni (0,5—0,6 %).
Чугун легированный
Свойства чугуна можно улучшить путем введения в его расплав легирующих элементов, оказывающих благоприятное влияние не только на его металлическую основу, но также на форму и размеры графитных включений, способствующих значительному измельчению структуры чугуна.
Основные свойства легированного чугуна и его применение приведены в таблице 3.
Таблица 3. Чугуны легированные, их основные свойства и применение
Чугун ковкий
В структуре ковкого чугуна графит имеет хлопьевидную форму. Такой графит называют углеродом отжига. По сравнению с серым чугуном ковкий чугун обладает более высокой прочностью, пластичностью и вязкостью. Свое название он получил потому, что имеет повышенную пластичность. Ковке в прямом понимании этого слова чугун не подвергается.
Процесс получения отливок из ковкого чугуна включает две стадии: изготовление фасонных отливок из белого чугуна и отжиг полученных отливок с целью графитизации цементита. При отжиге происходит разложение цементита белого чугуна с образованием графита хлопьевидной формы. В результате этого хрупкие и твердые отливки становятся пластичными и более мягкими. В зависимости от условий и режима отжига структура чугуна может иметь ферритную (Ф), перлитную (П) и ферритно-перлитную металлическую основу. Наибольшее распространение получил пластичный ферритный ковкий чугун. Отжиг ковкого чугуна-весьма продолжительный процесс, занимающий 70-80 ч. Однако его можно ускорить путем закалки отливок из белого чугуна перед графитизацией, а также модифицированием чугуна алюминием, бором, висмутом или титаном. Существуют и другие способы ускорения процесса отжига. Использование указанных способов позволяет сократить продолжительность отжига до 35-40 ч.
Таблица 2. Чугуны ковкие, их основные свойства и применение
эксплуатируемых при высоких динамических и статических нагрузках
(хомутов, гаек, вентилей, деталей сельскохозяйственных машин,
глушителей, фланцев, муфт, тормозных деталей, педалей,
умеренной пластичностью и хорошими антифрикционными свойствами.
Из них получают вилки карданных валов, шестерни, червячные колеса,
поршни, подшипники, звенья и ролики конвейерных цепей, втулки,
По ГОСТ 1215-79 маркируется ковкий чугун по тому же принципу, что и высокопрочный. Например, марка чугуна КЧ 33-8 означает, что данный чугун имеет предел прочности σв = 32.4 Н/мм 2 (33 кгс/мм 2 ) и относительное удлинение δ =8 %.
Отливки из ковкого чугуна можно получить с сечением до 55 мм. При большем сечении в сердцевине отливок образуется пластинчатый графит и чугун становится не пригодным для отжига. В машиностроении чаще применяют высокопрочный чугун, который получают при менее сложных и более дешевых технологических процессах, чем процессы производства ковкого чугуна.
Основные свойства ковкого чугуна и его применение приведены в таблице 2.
2. МЕХАНИЧЕСКИЕ СВОЙСТВА
2.1. Временное сопротивление при растяжении чугуна в литом состоянии или после термической обработки должно соответствовать указанному в таблице.
Марка чугуна
по СТ СЭВ 4560-84
Временное сопротивление при растяжении ,
МПа (кгс/мм), не менее
Примечание. Допускается превышение минимального значения временного сопротивления при растяжении не более чем на 100 МПа, если в нормативно-технической документации на отливки нет других ограничений.
Временное сопротивление при растяжении чугуна марки СЧ10 определяется no требованию потребителя.
2.2. Механические свойства чугуна в стенках отливки различного сечения приведены в приложении 1.
Дополнительные сведения о физических свойствах чугуна приведены в приложении 2.
Химический состав приведен в приложении 3.
Цифра ы в марке сплава сч25 означает
ЧУГУН С ПЛАСТИНЧАТЫМ ГРАФИТОМ ДЛЯ ОТЛИВОК
Flake graphite iron for castings.
Grades
Дата введения 1987-01-01
Постановлением Государственного комитета СССР по стандартам от 24 сентября 1985 г. N 3009 дата введения установлена 01.01.87
Ограничение срока действия снято по протоколу N 7-95 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС N 11-95)
ВЗАМЕН ГОСТ 1412-79 в части марок чугуна
Настоящий стандарт распространяется на чугун с пластинчатым графитом для отливок и устанавливает его марки, определяемые на основе временного сопротивления чугуна при растяжении.
Читайте также: