Алюминиево медные сплавы марки
Алюминиевые сплавы используются гораздо чаще, чем этот же металл в чистом виде. И тут ничего удивительного: они обладают гораздо большей прочностью, а также устойчивостью к коррозии и высоким температурам.
Комбинации с различными веществами наделяют те или иные сплавы конкретными характеристиками. В зависимости от требований к конечному продукту в алюминий добавляется один или несколько легирующих элементов. А чтобы не возникло путаницы, получившийся сплав маркируют определенным образом. То есть заказчику остается лишь выбрать наиболее подходящий для своих нужд металл.
Типы, элементы сплава и состав
Как и почти все алюминиевые сплавы, различают деформируемые сплавы для прокатки и ковки и литейные сплавы для литья .
Содержание меди обычно составляет от 3 до 6%. Считается , что при содержании от 0,3% до 6% их невозможно или очень трудно сваривать ( сваркой плавлением ), при более высоком содержании Cu они свариваются. Большинство типов по-прежнему содержат магний , марганец и кремний, добавленные для увеличения прочности. Свинец и висмут образуют мелкие включения, которые плавятся при низких температурах и, таким образом, приводят к лучшему стружкообразованию , как у автоматной стали . Тепловое сопротивление увеличивается при добавлении никеля и железа.
Железо, содержащееся в технических сплавах в качестве примеси, препятствует холодному упрочнению . Это снова становится возможным при добавлении магния. Увеличение количества магния до 1,5% увеличивает прочность и удлинение при разрыве (см. AlMg ). Марганец также используется для увеличения прочности (см. AlMn ). Однако большие количества имеют отрицательные побочные эффекты, поэтому содержание Mn ограничено примерно 1%. Меньшие добавки кремния добавляются для связывания железа, поскольку он предпочтительно образует фазу AlFeSi, в то время как образование Al 7 Cu 2 Fe приведет к удалению большего количества меди из материала, что в таком случае больше не приведет к образованию действительно желаемых фаз (особенно Al 2 Cu, алюминид меди ). Большие количества кремния добавляют для образования Mg 2 Si ( силицид магния ) с магнием , который, как и AlMgSi, улучшает прочность и прокаливаемость.
Некоторые сплавы все еще содержат литий от 1,5% до 2,5%. Из-за очень низкой плотности Li (0,53 г / см³ по сравнению с 2,7 г / см³ алюминия) это приводит к более легким компонентам, что особенно выгодно в авиации. Подробнее см. Алюминиево-литиевый сплав .
Литейные сплавы
Литейные сплавы содержат около 4% меди и другие небольшие количества добавок, улучшающих литье , включая титан и магний . Исходный материал - первичный алюминий ; Вторичный алюминий (изготовленный из лома), в отличие от других алюминиевых литейных сплавов, не используется, поскольку он снижает удлинение при разрыве и ударную вязкость. Литейные сплавы AlCu склонны к образованию горячих трещин и используются в состояниях упрочнения Т4 и Т6.
В следующей таблице показан состав некоторых марок согласно DIN EN 1706. Все данные в процентах по массе , остальное - алюминий.
количество | Химическая промышленность ( обозначение CEN ) | Кремний | железо | медь | марганец | магний | цинк | титан |
---|---|---|---|---|---|---|---|---|
21000 | AlCu4TiMg | 0,2 | 0,4 | 4,2-5,0 | 0,10 | 0,15-0,35 | 0,1 | 0,15-0,30 |
21100 | AlCu4Ti | 0,18 | 0,2 | 4,2-5,2 | 0,55 | - | 0,07 | 0,15-0,30 |
Кованые сплавы
Физические свойства
- Плотность — 2712 кг/м 3 .
- Температура плавления — от 658°C до 660°C.
- Удельная теплота плавления — 390 кДж/кг.
- Температура кипения — 2500 °C.
- Удельная теплота испарения — 10,53 МДж/кг.
- Удельная теплоемкость — 897 Дж/кг·K.
- Электропроводность — 37·10 6 См/м.
- Теплопроводность — 203,5 Вт/(м·К).
Сплавы с содержанием 9-11 % меди
Очень ограниченное применение имеют алюминиево-медные сплавы, которые содержат 9-11 % меди. Они сохраняют высокую прочность при повышенных температурах и имеют высокую износостойкость, что очень привлекательно для применения в авиационных головках цилиндров и автомобильных блоках цилиндров.
Очень хорошая прочность при высоких температурах является характерным свойством алюминиевых сплавов, которые содержат медь, никель и магний, а иногда также железо.
Фазовая диаграмма алюминий-медь
Эти сплавы являются термически упрочняемыми и могут достигать довольно высокой прочности и пластичности, особенно если они получены из слитков с содержанием железа не более 0,15 %.
Группа высокопрочных сплавов
На самом деле дюралюминий – это целая группа сплавов, в которых основным компонентом является алюминий, а его легирующими элементами – медь, цинк, марганец, магний. Но в целом их характеристика определяется не только составом, но и способом термообработки. В 1903 году впервые было обнаружено, что в процессе старения сплав алюминия с медью становится еще более прочным и твердым.
Как выяснилось позже, это объясняется тем, что когда после закалки металл находится несколько дней при комнатной температуре, его перенасыщенный твердый раствор распадается, а это, в свою очередь, сопровождается упрочнением материала.
Алюминий и его сплавы: характеристика, свойства, применение
Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.
Сплавы с содержанием 7-8 % меди
Сплавы алюминий-медь с более высоким содержанием меди (7-8 %) когда-то были самыми популярными. В настоящее время их почти полностью заменили сплавы алюминия-медь-кремний. Единственным преимуществом сплавов алюминий-медь с высоким содержанием меди является их нечувствительность к примесям. Однако они имеют очень низкую прочность и весьма посредственные литейные свойства.
Маркировка алюминиевых сплавов
При определении марки алюминиевых сплавов можно столкнуться с определенными сложностями. Маркировка выполняется таким образом, чтобы вопросов при уточнении соединения не возникало. Составы имеют определенное буквенно-цифровое обозначение.
Особенности маркировки заключаются в следующем:
- в начале стоят одна или несколько букв, указывающие на состав соединения;
- маркировки включают в себя цифровой порядковый номер;
- заканчиваться маркировка может также буквой, обозначающей особенности обработки материала (например, термической).
Ознакомимся с правилами маркировки на примере сплава Д17П. Первая буква Д обозначает состав сплава – дюралюминий. В составе всех дюралюминиев присутствуют определенные химические элементы, различающиеся по количественному содержанию. Порядковый номер 17 указывает на конкретный материал, обладающий определенными свойствами. Буква П в конце маркировки используется для обозначения способа обработки полунагартованного соединения, получаемого под давлением без предварительного нагрева металла, соответственно, прочностные характеристики будут составлять половину от максимально возможных.
Маркировка алюминиевых сплавов производится по ГОСТу 4784-97, определяющему основные требования к обозначению соединений.
Алюминиевые сплавы
Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.
Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.
Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.
Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.
- Прокаткой, если необходимо получить листы и фольгу.
- Прессованием, если нужно получить профили, трубы и прутки.
- Формовкой, чтобы получить сложные формы полуфабрикатов.
- Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.
Приложения
Алюминиево-медные сплавы используются в основном в авиастроении , где их низкая коррозионная стойкость играет второстепенную роль. Сплавы обрабатываются прокаткой , ковкой , экструзией, а иногда и литьем .
Применение алюминия
Ювелирные изделия
В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.
Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.
Столовые приборы
По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.
Стекловарение
Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.
Пищевая промышленность
Военная промышленность
Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.
Ракетная техника
Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.
Алюмоэнергетика
В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.
Фазовая диаграмма алюминий-медь
Литейные сплавы алюминий-медь
Алюминиевые литейные сплавы, основным легирующим элементом является медь, имеют ее содержание от 4 до 5 %. Кроме того в них присутствуют обычные примеси железо и кремний, а иногда также небольшие количества марганца.
Алюминиевые сплавы в конструкциях
Рейтинг прочности алюминиевых сплавов
Нелегированный алюминий имеет предел прочности на растяжение около 90 МПа. Однако, небольшими добавками легирующих элементов, таких , как медь, магний, марганец, к ремний, цинк, не большого количества некоторых других элементов получают алюминиевые сплавы.
Алюминиевые сплавы создают для того, чтобы получить алюминий со специальными свойствами, например, с более высокими механическими свойствами (рисунки 8 и 9).
Выбор сплава
При выборе алюминиевого сплава в качестве конструкционного материала, главным фактором является обеспечение прочности изготавливаемого из него конструкционного элемента. Однако конструкционную прочность различных типов элементов обеспечивают различные свойства одного и того же конструкционного материала.
Например, прочность «толстой» колонны будет зависеть в основном от предела текучести металла, тогда как прочность «тонкой» колонны будет зависеть главным образом от модуля упругости материала. Поскольку предел текучести алюминиевых сплавов нередко сравним с пределами текучести рядовых конструкционных сталей, то алюминий мог бы вполне потягаться с ними для «толстых» колонн. С другой стороны, поскольку модуль упругости алюминия и его сплавов составляет всего лишь где-то треть от модуля упругости сталей, то алюминий вряд ли может соперничать со сталями в «тонких» колоннах.
Прочность, однако, не является единственной рабочей характеристикой конструкции или изделия. Такие дополнительные факторы, как коррозионная стойкость, легкость обработки (прессуемость или свариваемость), жесткость (модуль упругости), пластическое разрушение (относительное удлинение), вес (плотность), усталостная прочность, а также стоимость, должны в той или иной мере учитываться при выборе нужного конструкционного материала.
Экономика алюминиевой конструкции
Часто стоимость материала является критическим фактором. Однако сравнение алюминиевых сплавов и сталей на основе стоимости единицы массы или объема может ввести в заблуждение, так как они имеют различные прочности, плотности и другие свойства.
Если бы стоимость материала была единственным фактором и углеродистые стали могли применяться без защитного антикоррозионного покрытия, то всегда и везде применялись бы только они. Однако, при выборе материала в рассмотрение принимаются и другие факторы, такие как стоимость эксплуатации и технического обслуживания в течение всего срока службы конструкции. Кроме того, в некоторых специфических условиях «правило» о том, что алюминиевый элемент в два раза легче стального не всегда справедливо. Например, алюминиевый компонент может весить и значительно меньше, если толщину стального элемента нужно увеличивать с учетом ее возможного уменьшения от воздействия слишком агрессивной коррозии в течение всего срока службы.
Если требуются профили со сложными поперечными сечениями, как, например, в ограждающих фасадных конструкциях, то в таких случаях, стоимость стального элемента намного больше, чем стоимость его материала. Дело в том, что для изготовления этого элемента из стальной заготовки ее надо механически обрабатывать, подвергать холодной штамповке или гибке, а, может быть, и применять сварку. В то же время стоимость изготовления алюминиевого профиля составляет только малую долю стоимости «сырого» алюминия.
Из-за высокой стоимости нержавеющих сталей они применяются только, если вес элемента или конструкции не имеет значения, а важны внешний вид и свариваемость. Обычно, когда нержавеющая сталь применяется вместо алюминия, то причина часто только одна – ограничения алюминиевых сплавов по сварке.
Алюминиевые сплавы по Еврокоду 9
Алюминиевые сплавы предлагают инженерам-конструкторам широкий выбор материалов. Каждый сплав имеет свои особенные характеристики, которые служат для обеспечения заданных свойств. Когда коррозионная стойкость, высокое отношение прочности к весу и легкость изготовления являются существенными конструкционными параметрами, тогда алюминиевые сплавы заслуживают серьезного рассмотрения.
В таблицах 1 и 2 представлены деформируемые алюминиевые сплавы, которые Еврокод 9 рекомендует и разрешает для применения в зданиях и сооружениях (см. подробнее здесь).
Механические свойства
Производство алюминия
Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.
Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.
Основные группы алюминиевых сплавов и их свойства
Для работы с алюминием и его соединениями необходимо ознакомиться со свойствами металла, поскольку они существенно влияют на сферу применения деталей и характеристики материала. Ранее мы говорили о классификации сплавов алюминия.
Далее расскажем о наиболее распространенных типах металла и их свойствах.
Соединение также известно под названием алькусин. Сплавы, в которых присутствуют медь и кремний, используются для изготовления деталей промышленного оборудования. Отличные технические свойства позволяют эксплуатировать их в условиях постоянной нагрузки.
Технические характеристики составов, в которых присутствует медь, сравнимы с низкоуглеродистыми сталями. Основной недостаток заключается в плохой коррозионной устойчивости. Детали покрываются защитным составом, предохраняющим от негативного воздействия окружающей среды. Для улучшения качеств материала используют легирующие компоненты (марганец, железо, магний и кремний).
Эти соединения носят название силумина и служат для производства декоративных элементов. Для повышения характеристик алюминиевых сплавов используют натрий и литий.
Присутствие в составе магния повышает прочностные характеристики материала, а также облегчает процесс сварки. Содержание магния не должно превышать 6 %. Более высокий процент снизит антикоррозионные свойства соединения. Для повышения прочности без снижения коррозионной устойчивости в составы добавляют марганец, ванадий, хром или кремний. Каждый дополнительный процент магния улучшает прочность на 30 МПа.
Для повышения устойчивости к коррозии в состав соединения добавляют марганец. Благодаря ему повышаются прочность и свариваемость материала. Кроме марганца в состав добавляют железо и кремний.
- Сплавы с алюминием, цинком и магнием.
Высокими прочностными характеристиками, а также простотой обработки отличаются алюминиевые сплавы с магнием и цинком. Для улучшения свойств материала его подвергают термической обработке. Недостатком таких соединений является низкая антикоррозионная устойчивость. Для исправления этого минуса используют легирующий компонент – медь.
В этих сплавах, помимо алюминия, содержатся магний и кремний. Соединения отличаются высокой пластичностью, коррозионной устойчивостью.
Международные серии алюминиевых сплавов
В основе современной международной классификации деформируемых алюминиевых сплавов лежит цифровая классификация Американской алюминиевой ассоциации, введенная в 1954 году, согласно которой каждому сплаву присваивается «номер» из 4-х цифр.
Ниже идет речь от деформируемых алюминиевых сплавах. По обозначениям литейных алюминиевых сплавов см. здесь.
Содержание
Международные обозначения алюминиевых сплавов
- Первая цифра указывает на главный легирующий элемент, который формирует серию (группу) сплавов с аналогичными свойствами.
- Две последних цифры присваиваются очередному сплаву из этой серии.
- Вторая цифра обозначает модификацию сплава. Например, сплав 6463 является модификацией сплава 6063 с несколько более жесткими ограничениями на содержание некоторых легирующих элементов и примесей, таких как железо, марганец и хром, для получения лучшего качества при окончательной отделке поверхности, например, при анодировании.
Марки алюминиевых сплавов
- А — технический алюминий;
- Д — дюралюминий;
- АК — алюминиевый сплав, ковкий;
- АВ — авиаль;
- В — высокопрочный алюминиевый сплав;
- АЛ — литейный алюминиевый сплав;
- АМг — алюминиево-магниевый сплав;
- АМц — алюминиево-марганцевый сплав;
- САП — спеченные алюминиевые порошки;
- САС — спеченные алюминиевые сплавы.
- М — сплав после отжига (мягкий);
- Т — после закалки и естественного старения;
- А — плакированный (нанесен чистый слой алюминия);
- Н — нагартованный;
- П — полунагартованный.
Cплавы алюминия: выбор и применение
- содержит один или более легирующих элементов, а также некоторые примеси;
- алюминий преобладает по массе по каждому из других химических элементов;
- содержание алюминия не превышает 99,00 %.
Легирование в алюминиевых сплавах
- кремний (Si),
- магний (Mg),
- марганец (Mn),
- медь (Cu) и
- цинк (Zn).
Влияние, например, содержания меди в алюминиевом сплаве на его механические свойства показано на рисунке 1.
Рисунок 1- Влияние легирования алюминиевого сплава медью на механические свойства [3]
Железо в алюминиевых сплавах
Деформируемые алюминиевые сплавы содержат примерно 0,1 – 0,4 % (по массе) железа (Fe). Железо обычно рассматривается как нежелательная примесь. Его содержание зависит от качества исходной руды (бокситов) и технологии электролитического восстановления. Иногда легирование железом применяют для получения особых свойств материала, например, для изготовления алюминиевой фольги.
Модифицирование сплавов
В комбинации с основными легирующими элементами часто применяют другие легирующие элементы: висмут (Bi), бор (B), хром (Cr), свинец (Pb), никель (Ni), титан (Ti) и цирконий (Zr). Эти элементы обычно применяют в небольших количествах (до 0,1 % по массе, хотя B, Pb и Cr могут составлять до 0,5 %), чтобы придать им особые свойства, модифицировать сплавы для специальных целей, таких как литейные качества, обрабатываемость, теплостойкость, коррозионная стойкость, прочность и т.п.
Сферы применения алюминиевых сплавов
Алюминиевые сплавы широко применяются во многих сферах. Благодаря их эксплуатационным характеристикам они входят в пятерку наиболее распространенных соединений металла.
Сначала, благодаря легкости и прочности, их начали использовать при производстве дирижаблей и самолетов.
В настоящее время в связи с высокой температурой плавления соединения алюминия используют при производстве скоростных поездов. Поверхность во время движения на большой скорости нагревается, однако при этом не подвергается деформации.
Широко применяются металл и его соединения в судостроении, где им отдают предпочтение перед сталями. Корпуса из алюминия не подвержены обрастанию ракушками, которые отрицательно сказываются на обтекаемости судов и скорости их движения. Очистка стального корпуса требует значительных временных и финансовых затрат. Таким образом, первоначальные вложения в строительство алюминиевого корпуса окупаются благодаря более дешевой эксплуатации.
Невысокая стоимость и небольшой удельный вес обеспечили востребованность материала в военной промышленности, к примеру, из него производят отдельные элементы стрелкового оружия. С использованием соединений алюминия изготавливают ракетное топливо.
Высокой электропроводностью обусловлено использование алюминиевых сплавов для производства проводов и деталей радиоприемников. Они подходят для изготовления различных габаритных проводников электрического тока (линий электропередач, оболочек высоковольтных кабелей, шин распределительных устройств), что вызвано их заметными преимуществами перед другими металлами. Например, для алюминиевых оболочек кабелей характерны большая прочность и меньшая плотность, чем для свинцовых. Страны с высокоразвитой промышленностью тратят около 15 % алюминия для удовлетворения электротехнических потребностей.
Металл в настоящее время продолжает использоваться для производства посуды. По-прежнему остаются востребованными алюминиевые вилки, ложки, кастрюли и емкости для жидкостей.
Алюминий нашел применение и в пищевой промышленности – в качестве пищевой добавки. Для обозначения в составе продуктов алюминия используют букву E. Металл выступает в роли красителя в кондитерских изделиях, предохраняет продукты от появления плесени. Различные продукты упаковывают в тонкую алюминиевую фольгу, толщина которой не превышает 0,009 мм. А алюминиевая лента толщиной 0,2-0,3 мм идет на производство консервных банок.
Одним из специфических вариантов использования алюминиевых сплавов являются атомные реакторы. Большая часть из них при работе использует тепловые нейтроны. Соответственно, конструкция реакторов должна состоять из металлов, слабо поглощающих такие частицы. К примеру, из алюминия, отличающегося также высокой коррозионной устойчивостью при воздействии горячей воды, перегретого пара, углекислого газа, которые чаще всего выступают в качестве источника тепла в реакторах.
Международные и европейские стандарты
Эта серия создана для технически чистого алюминия с содержанием алюминия не менее 99 %. Обозначения сплавов в серии 1ххх назначаются в зависимости от степени чистоты алюминия и вида примесей, основными из которых являются железо и кремний. Основными применениями сплавов этой серии являются электрические проводники, а также химическое оборудование, поскольку отличительными свойствами сплавов этой серии являются хорошая электропроводность и коррозионная стойкость.
- Последние две цифры обозначения сплава указывают на две цифры справа от десятичной точки (запятой) процентного содержания алюминия. Например, 1050 обозначает сплав, у которого содержание алюминия составляет 99,50 %.
Главным легирующим элементом этой серии является медь, что обеспечивает сплавам высокую прочность, но приводит к пониженной коррозионной стойкости.
- Эти сплавы были среди первых алюминиевых сплавов и их назвали дюралюминами.
- Сплав 2024 (наш Д16) является, наверное, самым известным и наиболее широко применявшимся «самолетным» сплавом.
- В настоящее время большинство сплавов этой серии потеряли свою былую популярность, поскольку они имеют недостаточную коррозионную стойкость при работе на открытом воздухе без защитного покрытия, а также трудно поддаются сварке.
Марганец является главным легирующим элементом серии 3ххх, повышая прочность нелегированного алюминия где-то на 20 %. Коррозионная стойкость и обрабатываемость этих сплавов очень высокая. Самый популярный сплав серии – 3003 (АМц по ГОСТ 4784). Сплавы этой серии нередко применяют в строительстве, при устройстве дождевых водостоков, кровли и облицовки зданий.
Это довольно экзотическая серия сплавов имеет кремний главным легирующим элементом. Медь, магний и бериллий могут добавляться как дополнительные легирующие элементы. Подавляющее большинство сплавов этой серии являются нетермоупрочняемыми, но есть и исключения. Содержание кремния может достигать 13,5 % для снижения температуры начала плавления и повышения текучести, что очень важно, поскольку большинство этих сплавов применяются для изготовления проволоки и прутков для сварки и пайки.
Сплавы этой серии содержат магний и кремний от 0,2 до 1,8 % в пропорциях для образования силицида магния Mg2Si. Эти сплавы имеют хороший баланс коррозионной стойкости и прочности.
- Популярным конструкционным материалом является сплав 6061 (АД33), который по пределу текучести близок к малоуглеродистым сталям.
- Подавляющее большинство алюминиевых профилей производится из аналогичных сплавов 6060 и 6063 (европейский и американский аналоги нашего АД31). Из таких профилей изготавливают все алюминиевые строительные ограждающие конструкции (фасады, окна и двери).
Главный легирующий элемент сплавов этой серии – цинк. Серия 7ххх включает два типа сплавов:
Эта серия включает недавно разработанные сплавы, главные легирующие элементы которых отличаются от главных элементов других серий или по другим причинам не могут быть включены в «традиционные» серии. Например, в эту серию включены, в том числе
- сплавы с литием для аэрокосмической промышленности (например, 8090);
- сплавы с содержанием железа более 1 % для изготовления алюминиевой фольги (например, 8006, 8011, 8079, 8111);
- сплавы, которые применяют для изготовление алюминиевых проводов (например, 8017, 8030, 8076, 8177).
Литий имеет значительно более низкую плотность, чем алюминий (0,53 г/см³), а его растворимость в алюминии относительно велика. Поэтому он может легировать алюминий в больших количествах и обеспечивать значительное снижение плотности алюминиевого сплава – до 10 % по сравнению с другими алюминиевыми сплавами.
Свойства сплава
Легирование металла теми или иными элементами позволяет повысить его характеристики. Вы запомнили, как называется сплав алюминия с медью? Какими же свойствами он обладает?
Сам по себе алюминий очень легкий, мягкий и совершенно непрочный. Он растворим в слабо концентрированных щелочах и кислотах. Добавив к алюминию медь и магний, можно получить уже достаточно прочный сплав. Его эксплуатационные параметры достаточно легко улучшить – просто нужно оставить его полежать при комнатной температуре. Так, эффект старения увеличивает прочность дюраля, о чём мы говорили выше.
Сам по себе алюминий достаточно легкий. Незначительный процент меди не утяжеляет сплав. Еще одна положительная характеристика – это возможность многократно переплавлять сплав. При этом он не будет терять своих свойств. Единственное, что необходимо, так это после отливки дать ему «отдохнуть» пару суток.
Недостатком дюралюминия является его низкая коррозионная стойкость. Поэтому чаще всего такой материал покрывают чистым слоем алюминия или же красят лаками и красками.
Однофазные алюминиевые сплавы
Алюминиево-медные сплавы являются однофазными. В отличие от сплавов алюминия с кремнием здесь нет вторичной фазы с высокой жидкотекучестью, которая бывает так полезна на последних стадиях затвердевания отливок. Когда такая фаза присутствует, она помогает заполнять металлом пустоты, которые возникают при усадке, а также компенсирует напряжения, которые возникают в отливке при ее затвердевании.
Классификация алюминиевых сплавов
Две категории: литейные и деформируемые
Две категории алюминиевых сплавов
- литейные
- деформируемые
Деформируемые сплавы
- прокаткой – для получения листов и фольги;
- прессованием – для получения профилей, труб и прутков;
- формовкой – для получения более сложных форм из катанных или прессованных полуфабрикатов;
- ковкой для получения сложных форм с повышенными механическими свойствами,
а также: - волочением, штамповкой, высадкой, вытяжкой, раскаткой, раздачей, гибкой и т. п.
Популярные деформируемые алюминиевые сплавы серии 6ххх, которые применяют для производства прессованных алюминиевых профилей, представлены ниже на рисунке 7.
Литейные сплавы
Литейные алюминиевые сплавы в расплавленном состоянии разливают непосредственно в их конечную форму одним из различных методов, таких как, литье в песчаные формы, литье в кокили или литье под давлением. При литье применяют сложные литейные формы. Эти сплавы часто имеют высокое содержание кремния для улучшения их литейных свойств.
У этих двух категорий алюминиевых сплавов классификация по легирующим сплавам различная: в целом в них добавляются одни и те же легирующие элементы, но в разных количествах.
Прочность и другие механические свойства алюминиевых сплавов, как деформированных, так и литейных, определяются в основном их химическим составом, т. е. содержанием в алюминии легирующих элементов, а также вредных примесей. Однако возможно изменение этих свойств для достижения их оптимального сочетания путем дополнительной обработки сплавов – термической или деформационной, или и той, и другой. В результате этого сплав изменяет свои первоначальные механические свойства и получает свое окончательное состояние, в котором и поставляется заказчику. Упрочняющую термическую обработку применяют как к литейным, так и к деформированным сплавам, Они в этом случае называются сплавами, упрочняемыми термической обработкой.
Два механизма упрочнения
Два класса алюминиевых сплавов:
- термически упрочняемые
- деформационно упрочняемые (нагартовываемые)
Термически упрочняемые сплавы
Нагартовываемые сплавы
Серии и системы легирования
Серии деформируемых сплавов
Серии литейных сплавов
Диаграмма состояния сплава (алюминий и медь)
Для того чтобы наиболее четко описать взаимодействие компонентов дюраля в твердом и жидком состоянии, а также объяснить характер изменения свойств сплава, используют диаграмму состояний.
Из неё видно, что наибольшая растворимость Cu в сплаве с алюминием наблюдается при температуре 548 °С и при этом она составляет 5,7 %. При повышении температуры она будет увеличиваться, а при понижении – уменьшаться. Минимальная растворимость (0,5 %) будет наблюдаться при комнатной температуре. Если же дюраль закалить выше 400 °С, он станет твердым однородным раствором – α.
Во время данного процесса будет происходить распад твердого раствора. Очень необычно ведёт себя сплав алюминия и меди, формула которого — CuAl2. Процесс сопровождается выделением избыточной фазы А1. Такой распад протекает в течение длительного времени. Это и есть то естественное старение, о котором мы уже ранее упоминали.
Классификация алюминиевых сплавов
Для классификации алюминиевых сплавов используется большое количество различных признаков. В зависимости от типа вспомогательных элементов выделяют следующие виды:
- с добавлением присадок, в качестве которых выступают различные материалы, например, магний, цинк, хром, кремний и другие.
- с добавлением интерметаллидов – в составе таких соединений присутствует несколько металлов, например, медь и магний, литий и магний.
В составе алюминиевых сплавов может присутствовать множество элементов, придающих материалу те или иные эксплуатационные характеристики.
По способу металлообработки выделяют следующие типы соединений алюминия:
- Деформируемые алюминиевые сплавы – твердые соединения, которые благодаря высокой пластичности могут обрабатываться прессованием или ковкой. Эксплуатационные характеристики материала повышаются путем проведения дополнительной обработки.
- Литейные – поступая на производство в жидком состоянии, они обрабатываются после того как затвердеют. Из литейных алюминиевых сплавов изготавливают корпусные детали различной конфигурации.
Отдельная группа представлена техническим алюминием, содержащим меньше 1 % посторонних примесей. Такой состав приводит к образованию на поверхности металла оксидной пленки, защищающей его от негативного воздействия окружающей среды. В то же время прочностные характеристики технического алюминия довольно низкие.
В зависимости от прочности соединения бывают:
- сверхпрочными (от 480 МПа);
- среднепрочными (от 300–480 МПа);
- малопрочными (до 300 МПа);
Отдельная группа представлена дуралюминами, обладающими особыми эксплуатационными свойствами.
Алюминиево-медный сплав
Алюминиево-медные сплавы ( AlCu ) - это алюминиевые сплавы - сплавы, которые в основном состоят из алюминия (Al), - которые содержат медь (Cu) в качестве основного легирующего элемента . Важные типы по-прежнему содержат добавки магния и кремния (AlCu (Mg, Si)), а марганец часто также добавляют для повышения прочности (см. AlMn ). Основная область применения - авиастроение . Эти сплавы обладают средними до высокой прочности и возрастные отверждаемые . Доступны как деформируемые, так и литые сплавы . Недостатками являются их подверженность коррозии и плохая свариваемость . Они стандартизированы в серии 2000. Дюралюмин - самая старая разновидность в этой группе, восходящая к Альфреду Вильму , который открыл его в 1903 году. Только за счет использования алюминиево-медных сплавов алюминий можно было использовать в качестве широко распространенного конструкционного материала, поскольку чистый алюминий слишком мягкий для этого, а другие закаливаемые сплавы, такие как сплавы алюминия-магния-кремния (AlMgSi) или естественно твердые (не закаливаемые) сплавы, все еще остаются не были известны.
Трудные алюминиевые сплавы
Эти сплавы более сложны для литья, чем, скажем, сплавы алюминия с кремнием. При работе с ними необходимо предпринимать специальные меры, чтобы обеспечивать затвердевание металла от отдаленных участках отливки к более горячими и более жидким участкам, к прибылям и затем к питателям. Когда такие должные меры приняты, эти алюминиево-медные сплавы могут успешно применяться для производства отливок с высокой прочностью и пластичностью. Заметим, что более сложная технология литья характерна и для других однофазных алюминиевых литейных сплавов.
Алюминиево-медные сплавы проявляют весьма низкие литейные свойства и требуют более тщательного проектирования литейных форм, чтобы получить хорошую отливку. Эти сплавы применяют главным образом для литья в песчаные формы. Если есть необходимость их литья в металлические формы, то в них добавляют кремний для увеличения текучести и снижения горячего растрескивания. Однако добавки кремния существенно снижают пластичность материала отливки.
Краткая характеристика алюминия и его сплавов
Впервые алюминий был получен учеными-химиками из Дании (Эрстедом) и Германии (Велером) в 1825 и 1827 годах соответственно. В промышленных масштабах производить металл стало возможным в 1886 году благодаря разработкам американца Чарльза Холла и француза Поля Эру. Стоимость алюминия вплоть до конца XIX века лишь ненамного уступала золоту.
В начале прошлого столетия алюминий использовался только в чистом виде. В 1906 году немецкий ученый Вильм термически упрочнил металл, добавив к нему медь (4 %), магний (0,5 %), марганец (0,5 %). Так появился первый сплав – дуралюмин. Алюминиевые сплавы, обладающие, помимо высокой прочности, небольшой плотностью, широко применяются в промышленности в настоящее время.
Удельная прочность соединений алюминия (отношение временного сопротивления к плотности) значительно выше аналогичного параметра сталей. Благодаря этому алюминиевые соединения широко используются в ракето- и самолетостроении.
Для металла и его сплавов характерны высокая технологичность и простота деформации, что позволяет с легкостью создавать детали сложной конфигурации. К достоинствам материала относятся также устойчивость к коррозии и хорошая электропроводность (эта характеристика выше только у серебра, меди и золота). Применение сплавов алюминия в электронике и электротехнике обусловлено легкостью их раскатывания в фольгу.
Рекомендовано к прочтению
- Резка меди лазером: преимущества и недостатки технологии
- Виды резки металла: промышленное применение
- Металлообработка по чертежам: удобно и выгодно
Благодаря низкой температуре плавления при обработке материала не требуются значительные энергетические затраты, соответственно, производство и продукция обладают невысокой себестоимостью.
Химический состав алюминиевых сплавов
Алюминиевые сплавы | |||||||||||||
Марка | Массовая доля элементов, % | Плотность, кг/дм³ | |||||||||||
ГОСТ | ISO 209-1-89 | Кремний (Si) | Железо (Fe) | Медь (Cu) | Марганец (Mn) | Магний (Mg) | Хром (Cr) | Цинк (Zn) | Титан (Ti) | Другие | Алюминий не менее | ||
Каждый | Сумма | ||||||||||||
АД000 | A199,8 1080A | 0,15 | 0,15 | 0,03 | 0,02 | 0,02 | 0,06 | 0,02 | 0,02 | 99,8 | 2,7 | ||
АД00 1010 | A199,7 1070A | 0,2 | 0,25 | 0,03 | 0,03 | 0,03 | 0,07 | 0,03 | 0,03 | 99,7 | 2,7 | ||
АД00Е 1010Е | ЕА199,7 1370 | 0,1 | 0,25 | 0,02 | 0,01 | 0,02 | 0,01 | 0,04 | Бор:0,02 Ванадий+титан:0,02 | 0,1 | 99,7 | 2,7 |
Сплавы алюминия с другими элементами
Легирующими элементами, используемыми при изготовлении алюминиевых сплавов и улучшающими их качественные характеристики, являются также следующие.
Бериллий уменьшает окисление при термической обработке. Невысокое содержание бериллия (0,01–0,05 %) улучшает текучесть соединений алюминия, используемых в процессе производства деталей двигателей внутреннего сгорания (поршней и головок цилиндров).
Висмут, а также свинец, олово или кадмий, обладающие низкой температурой плавления, при добавлении в состав сплавов облегчают процесс резки металла. Эти компоненты способствуют образованию мягких легкоплавких фаз, обеспечивающих ломкость стружки и смазывание резца.
Соединения с добавлением галлия (0,01–0,1 %) используются для производства расходуемых анодов.
Небольшое количество железа (не более 0,04 %) добавляют в материал, используемый для изготовления проводов, за счет этого повышается прочность и ползучесть материала. Кроме того, железо снижает прилипание состава к стенкам форм при литье в кокиль.
Виды и свойства алюминиевых сплавов
Алюминиево-магниевые сплавы
Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.
В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.
Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.
Алюминиево-марганцевые сплавы
Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.
Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.
Сплавы алюминий-медь-кремний
Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.
Алюминиево-медные сплавы
Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.
Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.
Алюминий-кремниевые сплавы
Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.
Сплавы алюминий-цинк-магний
Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.
Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.
Авиаль
Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».
Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.
Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.
Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.
Читайте также: